• Title/Summary/Keyword: mixed soil layer

Search Result 92, Processing Time 0.028 seconds

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Vegetation Structure and Soil Characteristics around Camellia japonica Stand in Hakdong, Geoje Island (거제 학동 동백나무림 주변의 식생구조 및 토양특성)

  • Chung, Jae-Min;Jung, Hye-Ran;Kang, Jin-Taek;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.31-40
    • /
    • 2010
  • This study was carried out to offer a basis data for conservation and application of effective management of Camellia japonica stand in Hakdong, Geoje Island. Field survey was conducted at C. japonica stand, mixed stand, Chamaecyparis obtusa plantation, and Pinus thunbergii stand. Importance value of C. japonica at tree layer was highest in C. japonica stand and mixed stand, and that of C. obtusa and P. thunbergii were highest in C. obtusa plantation and P. thunbergii stand, respectively. At subtree layer, C. japonica, Callicarpa dichotoma, Neolitses serices, and Styrax japonica had the highest importance value in C. japonica stand, mixed stand, C. obtusa plantation, and P. thunbergii stand, respectively. The species diversity ranged from 0.121 to 1.589 in C. japonica stand, 0.543 to 1.540 in mixed stand, 0.276 to 1.321 in C. obtusa plantation, and 0.764 to 1.523 in P. thunbergii stand, respectively. Soil pH was 5.72 in C. japonica stand, 5.26 in mixed stand, 5.21 in C. obtusa plantation, and 5.32 in P. thunbergii stand. The content of organic matter and total N were 5.77, 0.48% in C. japonica stand, 4.41, 0.30% in mixed stand, 3.28, 0.33% in C. obtusa plantation, and 5.32, 0.28% in P. thunbergii stand.

New method for sclerotial isolation of Sclerotium spp. from infested soil

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Shim, Hong-Sik;Yeh, Wan-Hae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.120.1-120
    • /
    • 2003
  • White rot on Allium species recently had a high incidence as increased cultivating areas of tropical garlic types in Korea. Two types of Sclerotium have been known as causal agents producing different size and shapes of sclerotia in infested fields. We developed a new method for isolation of two types of sclerotia from infested field soils that can be used for ecological study of sclerotium spp. and establishment of control strategy. Soil samples collected from heavily infested fields were evenly mixed and placed on a automatic sieve shaker connected with tap water. After 10 min. of shaking, residues on 0.5mm and 0.25mm sieve were separately collected and suspended with 70% sugar solution, which method floats sclerotia in aqueous layer. Then, floated fraction was carefully separated and mixed with a same volume of 1% sodium hypochlorite solution to differentiate with organic materials. This method provides direct count of sclerotia under dissecting microscopy.

  • PDF

The Construction Work Method of Mixed Coal Ash in Ash Pond to Recycle as a Horizontal Drain Material (수평배수재로 재활용하는 회사장 혼합석탄재의 시공 방안)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • The design for horizontal drain layer on soft ground starts from the decision that the material could be used or not, by verifying material condition in permeability of horizontal drain material according to the weight percent of the dry soil retained on #200 sieve. In the next step of the design, we estimate the thickness of horizontal drain layer to confirm trafficability of heavy machinery in construction work. Successively, the long-term functionality for good drainage of horizontal drain layer is checked and if needed, some means are considered. In this study, the system to recycle mixed coal ash in ash pond successfully as a horizontal drain material on soft ground is presented through the process and the result of its practical construction work. Namely, the pact is confirmed that mixed coal ash in ash pond should be sorted out by sieve screen to a certain extent and the remainders of this mixed coal ash on sieve openings be recycled, because the amount of finer particles than $75{\mu}m$ contained in mixed coal ash in ash pond is quite massive and irregular depending on the coal power plant or the location in same ash pond. In order to sort at large scale in situ, the dimension of a sieve squre hole and the sort-out method, etc. should be decided before the sort-out process. And, it is described that we need to manufacture classifier to sort out mixed coal ash in ash pond, too.

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Experimental Study on the Residual Soil-Grout Interface-shearing Behavior (풍화토-그라우트 인터페이스 전단 거동 특성에 대한 실험적 연구)

  • Shin, Gyu-Beom ;Chung, Choong-Ki;Kim, Inhyun;Jo, Bum-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.19-29
    • /
    • 2023
  • This research proposes a direct shear test method to evaluate the behavior of the soil-grout interface. The proposed test method was employed to conduct direct shear tests on two types of specimens: residual soil and residual soil-grout. The evaluation of the shear stress-slip curve indicated that the residual shear strength of residual soil-grout was similar to that of residual soil. It was further confirmed that residual soil determines the behavior of the critical state of the residual soil-grout interface. However, a remarkable increase in the maximum shear strength at the residual soil-grout interface was observed. The increase rate of the maximum shear strength was higher in loose soil due to the increased thickness of the interface layer where residual soil particles and grout particles are mixed.

Effects of Camping Recreation on Natural Environment in Mt. Chiak National Park (치악산도립공원에서의 양영행위가 자연환경에 미치는 영향)

  • 권영선;이경재
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 1987
  • This study was executed to measure the user\`s impact natural environment in National Park Campsite. Therefore, we choose Mt. Chiak National Park and the campsite in the district of Temple Ku-Ryong as a model of analysis, which is made by ecological approach, the number of the user has influence on the environment near the campsite. The result are as follows : 1. The more the number of users becomes, the more Na, Ca, Mg ion concentration and pH in the soil increase and the less K ion becomes. 2. Litter and humus depth, litter coverage, herb coverage, soil hardness, the surface of the ground layer and tree species numbers, density and coverage of lower layer shows a sensitive reaction to the number of the users. 3. The research shows that the tolerant trees against campsite impact are Lespedeza maximowiczii, Zanthoxylum schinifolium Staphylea bumalda, Smilax sieboldii, Quercus aliena, Euonymus oxyphyllus, Weigela subsessilis and Securinega suffruticosa, and the sensitive trees are Stephanandra incisa, Rubus trichocarpa, Rubus crataegifolius, Rhododendron mucronulatum, Styrax obassia, Acer palmatum, Lindera obtusiloba, Rhododendron suhlippenbachii, Rhus japonica and Callicarpa japonica. 4. The high density of the users made the simplication of a vegetation structure. So, as the number of the user increase the species showed severe heterogeniety between the heavy-use and nonuse site. 5. As considering the landscape management about campsite and surrounding area on the way of analysis of national landscape aspect and succession sere according to ecological aspect, it may be desirable that Pinus densiflora forest be conserved as Pinus densiflora landscape and mixed forest produce natural scenery with succession sere.

  • PDF

Effect of Visible Biopores on the Saturated Hydraulic Conductivity of Soil (가시 생물공극(生物孔隙)이 토양(土壤)의 투수계수(透水係數)에 미치는 영향(影響))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.64-69
    • /
    • 1981
  • A field and laboratory experiments were conducted to evaluate the effect of visible biopores (larger than 0.2 mm in diameter) on the saturated hydraulic conductivity of Bonryang sandy loam (Coarse loamy over sandy, mixed, mesic family of Typic Udifluvents) developed on alluvial plains. The saturated hydraulic conductivity was significantly correlated with the equivalent permeble surface area (EPSA) which was calculated from the number of various sized biopores in the soil observed by naked eye, and negatively correlated with the bulk density. The effect of biopores on the saturated hydraulic conductivity was remarkable in subsoil al though it was not pronounced in plowed layer and sandy substrata. The bulk density was found to be correlated with the number and the EPSA of the visible biopores. A remarkable spatial variability was observed in the number of biopore and the bulk density.

  • PDF

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.