• 제목/요약/키워드: mixed simply supported

검색결과 12건 처리시간 0.023초

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

Quasi-3D static analysis of two-directional functionally graded circular plates

  • Wu, Chih-Ping;Yu, Lu-Ting
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.789-801
    • /
    • 2018
  • A weak-form formulation of finite annular prism methods (FAPM) based on Reissner's mixed variational theorem (RMVT), is developed for the quasi three-dimensional (3D) static analysis of two-directional functionally graded (FG) circular plates with various boundary conditions and under mechanical loads. The material properties of the circular plate are assumed to obey either a two-directional power-law distribution of the volume fractions of the constituents through the radial-thickness surface or an exponential function distribution varying doubly exponentially through it. These FAPM solutions of the loaded FG circular plates with both simply-supported and clamped edges are in excellent agreement with the solutions obtained using the 3D analytical approach and two-dimensional advanced plate theories available in the literature.

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

A state space meshless method for the 3D analysis of FGM axisymmetric circular plates

  • Wu, Chih-Ping;Liu, Yan-Cheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.161-182
    • /
    • 2016
  • A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

Boundary discontinuous Fourier solution of thin Levy type flat and doubly curved shallow shells

  • Ahmet Sinan Oktem;Ilke Algula
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.595-608
    • /
    • 2024
  • This study presents a static analysis of thin shallow cylindrical and spherical panels, as well as plates (which are a special case of shells), under Levy-type mixed boundary conditions and various loading conditions. The study utilizes the boundary discontinuous double Fourier series method, where displacements are expressed as trigonometric functions, to analyze the system of partial differential equations. The panels are subjected to a simply supported type 3 (SS3) boundary condition on two opposite edges, while the remaining two edges are subjected to clamped type 3 (C3) boundary conditions. The study presents comprehensive tabular and graphical results that demonstrate the effects of curvature on the deflections and moments of thin shallow shells made from symmetric and antisymmetric cross-ply laminated composites, as well as isotropic steel materials. The proposed model is validated through comparison with existing literature, and the convergence characteristics are demonstrated. The changing trends of displacements and moments are explained in detail by investigating the effect of various parameters, such as stacking lamination, material types, curvature, and loading conditions.

A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

  • Abdalla, J.A.;Ibrahim, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.725-739
    • /
    • 2007
  • In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상 (On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation)

  • 김현영;김준식
    • 한국전산구조공학회논문집
    • /
    • 제33권5호
    • /
    • pp.279-286
    • /
    • 2020
  • 본 연구에서는 점근해석 및 논로컬 이론에서 요구하는 4차 이상의 고차 미분근사를 수행하기 위하여 계방정식에 혼합변분이론을 적용하여 MLS 차분법으로부터 구해지는 고차 미분근사의 정확도를 큰 폭으로 향상시킨다. 또한, MLS 차분법에 존재하는 세 가지 조건변수에 따른 고차미분근사의 정확도를 비교·분석한다. 혼합변분이론의 합응력을 후처리하여 변위의 미분을 근사할 경우 기존의 변위장 기반 계방정식의 차분 결과에 비해 미분 차수가 2차 낮아진다. 해석 범위내 절점 수가 과도하게 많거나 기저 차수가 클 경우 MLS 차분법의 영향영역 내에서 과적합(overfitting)이 발생한다. 또한 영향영역이 최적 범위 이상으로 넓어질 경우 근사의 정확도가 떨어진다. 위 내용을 사인 하중을 받는 단순지지보 수치예제로부터 확인하였다.