• Title/Summary/Keyword: mixed resin

Search Result 413, Processing Time 0.033 seconds

THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE (석고 다이에 대한 다이 강화제의 영향)

  • Kim, Young-Rim;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

INTENTIONAL REPLANTATION OF THE CROWN-ROOT FRACTURED TOOTH: A CASE REPORT (치관-치근 파절된 치아의 의도적 재식술 치험례)

  • Kim, Soo-Kyoung;Ahn, Seung-Tae;Choi, Sung-Chul;Kim, Kwang-Chul;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.381-386
    • /
    • 2010
  • As the vertical fracture occurs at the various locations following the long axis of a root, treatment method of crown-root fractured anterior teeth is decided according to the depth. If the fracture line is close to the crown, gingivectomy, orthodontic - forced eruption or surgical extrusion of apical fragment could be done. If the line is over 1/3 length of the root, the prognosis is poor and extraction is usually undertaken. However, extraction of maxillary incisor at growing children causes many complications such as esthetic, phonetic problem and alveolar bone resorption. Therefore, preservation of tooth is the highest priority. Recently, intentional replantation with composite resin could be considered as alternative treatment of crown-root fractured anterior tooth. This report presents a patient in mixed dentition with deep vertical crown-root fracture of the maxillary permanent central incisors by trauma. Intentional replantation of the fractured teeth was performed using composite resin. After 2 years, specific clinical symptom has not been found and the patient was satisfied of esthetic result. This method suggests the new technique to preserve a tooth as an alternative to extraction, although it is technically sensitive and the reports of long-term prognosis is insufficient.

A Study on Plywood Glue Extender from Bark and Particle Board Sander Dust (수피(樹皮) 및 파티클보드 폐기분말(廢棄粉末)을 이용(利用)한 합판(合板)의 증량(增量)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 1983
  • The shear strength of plywoods using Douglus-fir bark powder and particlebard sander dust(PSD), abandoned materials in plywood and particleboard industries, as extender to UF resin, was compared with that of plywoods using wheat flour. Extenders were mixed at the rate of 0%, 5%, 10%, 20%, and 30% of UF resin weight. In obtained results, the dry shear strength of all extended plywoods was highest at extending ratio 5% and the wet shear strength was highest at no extending and 5%. Douglas-fir bark powder-and PSD-extended plywoods had as high dry and wet shear strength as wheat flour-extended plywoods up to extending ratio 10% and 20% respectively. But at 300%, wheat flour-extended plywoods had higher shear strength. Douglas-fir bark powder and PSD size should have been reduced (enough to pass through 325 mesh screen) in order to develop the satisfactory mixing, spreading and plywood bond quality. But in this study the powders to pass through 100 mesh screen were used.

  • PDF

Thin Hardboard Manufacture from Waste Lignocellulosic Papers as Overlay Substitutes in Low Grade Plywood and Particle Board Panels(I) (고지로부터 저급합판 및 파아티클보오드 표면단판으로 사용될 수 있는 박판 하아드보오드의 제조(I))

  • Lee, Byung-Guen;Lee, Sang-Yeob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 1994
  • The purpose of this study was to determine the technical feasibility of making 3-dimensional thin hardboard panels for overlay substitutes of low grade particleboard and plywood panels. Experimental studies were directed at assembling bench-top apparatus, learning the characteristics of different types of lignocellulosic waste papers, for making thin hardboard with several combinations of them with and without resin addition. The raw materials used are waste corrugated cartons, cereal boxes, and old magazines which contain substantial amount of lignin in it. The experimental results showed that satisfactory thin(0.21~0.16cm) hardboard could be made from the residential mixed waste papers that have selected properties comparable to commercial 0.32cm hardboard. The significant mixing ratio effect of the waste papers was present on the thickness swelling, water absorption, linear expansion, and modulus of elasticity including Taber abrasion tests of the thin hardboard made. The mixing ratio of waste papers and resin in the thin hardboard prominently affected the specific gravity of it, which led to affect modulus of elasticity and those physical properties sensitively. And it was shown that the hardboard containing those physical properties can be used for overlay substitutes of low grade plywood and particleboard panels.

  • PDF

Citrate Complexes of Alkaline Earth Metals in Aqueous, Acetone-Water and Ethanol-Water Solutions (수용액, 물-아세톤 및 물-에탄올 혼합 용매 내에서 형성되는 알칼리토류금속의 시트르산 착물)

  • Choi, Sang-Up;Pae, Young-Il;Jae, Won-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 1970
  • Formation of the complexes of alkaline earths with citrate ions in aqueous, acetone-water and ethanol-water solutions was studied at room temperature by the equilibrium exchange technique. This technique involved the measurements of distribution of radioactivity between cation exchange resin and solution phase after the radioactive metal ions were equilibriated with the cation exchange resin in the presence of citrate ions ($Cit^{3-}$) of varying concentrations. The pH of the solutions was controlled to 7.2-7.5, and the ionic strength of the solutions was kept at 0.10-0.12. The present study revealed that both barium and strontium ions formed the one to one citrate complexes, $[M Cit]^-$ in all solvent systems examined. It was also observed that calcium ions formed the one to one citrate complex in aqueous solution. In acetone-water and ethanol-water solutions, however, calcium ions were observed to form both one to one and one to two complexes, $[Ca Cit]^-$ and $[Ca\;Cit_2]^{4-}$. The results of the present study indicated also that relative stabilities of the complexes increased in the order; $Ba^{++}\;<\;Sr^{++}\;<\;Ca^{++}$, and in the order of increasing concentration of the organic components in the mixed solvent systems.

  • PDF

TENSILE BOND STRENGTH BETWEEN NON-PRECIOUS DENTAL ALLOY AND VENEERING REINFORCED COMPOSITE RESINS (치과용 비귀금속 합금과 전장용 강화형 복합레진의 인장결합강도)

  • Yang, Byung-Duk;Park, Ju-Mi;Ko, Sok-Min;Kang, Geon-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.427-437
    • /
    • 2000
  • Recently the 2nd generation laboratory composite resins were introduced. Although the mechanical properties of these composite resins have been improved, there were some disadvantages such as discoloration, low abrasion resistance and debonding between metal and resin. The purpose of this study was to evaluate the tensile bond strength between non-pecious dental alloy(verabond) and four veneering reinforced composite resins ; Targis(Ivoclar Co., U.S.A.), Artglass(Kulzer CO., Germany), Sculpture(Jeneric Pentron Co., U.S.A.), and Estonia(Kurary Co., Japan). All test metal specimens were polished with #1,000 SiC paper, and sandblasted with $250{\mu}m$ aluminum oxide. After then. according to manufacturer's instructions metal adhesive primer and veneering resins were applied. All test specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 3 days, the other group was subjected to thermal cycling($2,000{\times}$) in water($5/55^{\circ}C$). Tensile bond strength was measured using Instron Universal Testing machine and the fractured surface was examined under the naked eyes and scanning electron microscope. Within the limitations imposed in this study, the following conclusions can be drawn: 1. In no-thermal cycling groups, there were no significant differences between Estenia and VMK68 but there were significant differences between Targis, Artglass, Sculpture and VMK68(p<0.05). 2. In no-thermal cycling resin groups, the highest tensile bond strength was observed in Estenia and there were significant differences between Estenia and the other resins(p<0.05). 3. Before and after thermal cycling, there were significant differences in tensile bond strength of Targis and Artglass(p<0.05). The tensile bond strength of Artglass was decreased and that of Targis was increased. 4. In no-thermal cycling groups, Artglass showed mixed fracture modes(95%), but after thermal cycling, Artglass showed adhesive fracture modes(75%).

  • PDF

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent (실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성)

  • Kim, TaeHee;Lim, Choong-Sun;Kim, Jin Chul;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.

Conservation Treatment and Analysis of the Paint of a C-46 Transport (근현대 대형유물 C-46 수송기의 도료분석 및 보존처리)

  • Kang, Hyunsam;Jang, Hanul;Lee, Uicheon;Kim, Soochul
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.67-90
    • /
    • 2022
  • A C-46 transport aircraft, which can be thought of as a large cultural heritage item from the modern period, was subjected to paint analysis and conservation treatment in preparation for its exhibition. The C-46 is the first aircraft ever dispatched to overseas combat zones by the Korean Air Force and carried out missions during the Vietnam War. The aircraft is mainly made of aluminum and shows signs of corrosion on its surface, including pitting and etching, as well as gray and white powdery attachments. In the analysis of the paint, diatomite(SiO2·nH2O) was confirmed in the red paint, titanium dioxide(TiO2) was identified in the white paint, black iron oxide(Fe3O4) was detected in the black paint, and colcothar(Fe3O4) mixed with putty was confirmed in the blue paint. Infrared spectroscopy revealed the use of alkyd resin in the paint on the main body and nitrocellulose in the Taegeuk pattern. During the conservation treatment, mechanical cleaning, such as sanding, was conducted to remove paint and varnish from the surface. Corrosion was removed by sanding and cleaning with chemical solvents, and new paints and varnishes were applied. Through the paint analysis and conservation treatment, the aircraft was made available for exhibition in a stable condition.

Properties on the Strength of Polymer Concrete Using Nano MMT-UP Composite (나노 MMT-폴리머 복합체를 이용한 폴리머 콘크리트의 강도 특성)

  • Jo, Byung-Wan;Moon, Rin-Gon;Park, Seung-Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.761-766
    • /
    • 2006
  • Polymer composite are increasingly considered as structural components for use in civil engineering, on account of their enhanced strength-to-weight ratios. Unsaturated polyester (UP) resin have been widely used for the matrix of composites such as FRP and polymer composite, due to its excellent adhesive. Polymer nanocomposites are new class of composites derived from the nano scale inorganic particles with dimensions typically in the range of 1 to 1000 nm that are dispersed in the polymer matrix homogeneously. Owing to the high aspect ratio of the fillers, mechanical, thermal, flame, retardant and barrier properties are enhanced without significant loss of clarity, toughness or impact strength. To prepare the MMT (Montmorillonite)-UP exfoliated nanocomposites, UP was mixed with MMT at $60^{\circ}C$ for 3 hours by using pan mixer. XRD (X-ray diffraction) pattern of the composites and TEM (Transmission Electron Micrographs) showed that the interlayer spacing of the modified MMT were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified MMT were higher than those of the composites with unmodified MMT. The thermal stability of MMT-UP nanocomposite is better than that of pure UP, and its glass transition temperature is higher than that of pure UP. The polymer concrete made with MMT-UP nanocomposite has better mechanical properties than of pure UP. Therefore, it is suggested that strength and elastic modulus of polymer concrete was found to be positively tensile strength and tensile modulus of the MMT-UP nanocomposites.

Cytotoxicity and Genotoxicity of Newly Developed Calcium Phosphate-based Root Canal Sealers (신개발 인산칼슘계 근관 봉함재의 세포독성 및 유전독성에 관한 연구)

  • Kim, Hee-Jung;Baek, Seung-Ho;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.36-49
    • /
    • 2006
  • The purpose of this study was to compare the cytotoxicity by MTT test and genotoxicity by Ames test of new calcium phosphate-based root canal sealers (CAPSEAL I, CAPSEAL II) with commercially available resin-based sealers (AH 26, AH Plus) , zinc oxide eugenol-based sealers (Tubliseal EWT, Pulp Canal Sealer EWT), calcium hydroxide-based sealer (Sealapex), and tricalcium phosphate based sealers (Sankin Apatite Root Canal Sealer I, II, III). According to this study, the results were as follows : 1. The extracts of freshly mixed group showed higher toxicity than those of 24 h set group in MTT assay (p<0.001). 2. CAPSEAL I and CAPSEAL II were less cytotoxic than AH 26, AH Plus, Tubliseal EWT, Pulp Canal Sealer EWT Sealapex and SARCS II in freshly mixed group (p<0.01). 3. AH 26 in freshly mixed group showed mutagenicity to TA98 and TA100 with and without S9 mix and AH Plus extracts also were mutagenic to TA100 with and without S9 mix. 4. Tubliseal EWT, Pulp Canal Sealer EWT and Sealapex in freshly mixed group were mutagenic to TA100 with S9 mix. 5. Among those of 24 h set groups the extracts of SARCS II were mutagenic to TA98 with and without S9 mix and AH 26 showed mutagenic effects to TA98 with S9 mix. 6. No mutagenic effect of CAPSEAL I and CAPSEAL II was detected. 7. There is no statistically significant difference between CAPSEAL I and CAPSEAL II at MTT assay and Ames test in both freshly mixed group and 24 h set group.