• Title/Summary/Keyword: mixed reality

Search Result 269, Processing Time 0.027 seconds

Design of Mixed Reality Visualization System for Operational Situation Using Cloud-based Geospatial Information (클라우드 기반 지리공간정보를 활용한 작전상황 혼합현실 가시화 시스템 설계)

  • Youngchan Jang;Jaeil Park;Eunji Cho;Songyun Kwak;Sang Heon Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.60-69
    • /
    • 2024
  • The importance of geospatial information is increasingly highlighted in the defense domain. Accurate and up-to-date geospatial data is essential for situational awareness, target analysis, and mission planning in millitary operations. The use of high-resolution geospatial data in military operations requires large storage and fast image processing capabilities. Efficient image processing is required for tasks such as extracting useful information from satellite images and creating 3D terrain for mission planning, In this paper, we designed a cloud-based operational situation mixed reality visualization system that utilizes large-scale geospatial information distributed processed on a cloud server based on the container orchestration platform Kubernetes. We implemented a prototype and confirmed the suitability of the design.

Fast Light Source Estimation Technique for Effective Synthesis of Mixed Reality Scene (효과적인 혼합현실 장면 생성을 위한 고속의 광원 추정 기법)

  • Shin, Seungmi;Seo, Woong;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.89-99
    • /
    • 2016
  • One of the fundamental elements in developing mixed reality applications is to effectively analyze and apply the environmental lighting information to image synthesis. In particular, interactive applications require to process dynamically varying lighting sources in real-time, reflecting them properly in rendering results. Previous related works are not often appropriate for this because they are usually designed to synthesize photorealistic images, generating too many, often exponentially increasing, light sources or having too heavy a computational complexity. In this paper, we present a fast light source estimation technique that aims to search for primary light sources on the fly from a sequence of video images taken by a camera equipped with a fisheye lens. In contrast to previous methods, our technique can adust the number of found light sources approximately to the size that a user specifies. Thus, it can be effectively used in Phong-illumination-model-based direct illumination or soft shadow generation through light sampling over area lights.

Mixed reality health management model using smart phone (스마트폰을 이용한 혼합현실 건강 관리 모델 연구)

  • Im, Jin-mo;Jang, Eun-Jin;Jeong, Chang-Sik;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.185-189
    • /
    • 2018
  • Today, the incidence of illnesses due to a lack of exercise, such as lack of exercise in the 20s and 30s, 40s menstrual period, and 50s in the fifties, is increasing every year, because of the introduction of new technologies such as smartphone development,And the pattern of life according to it changes conveniently and the amount of activity decreases, and the lack of momentum has a great influence. I would like to study new mixed reality healthcare service products by merging the existing human smartphone with mixed reality. This is not merely showing the numerical value of the momentum by attaching to the human body like the existing healthcare product,And to measure and analyze the amount of exercise to help people to manage their health.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

Multi-focus 3D display of see-through Head-Mounted Display type (투시형 두부 장착형 디스플레이방식의 다초점 3차원 디스플레이)

  • Kim, Dong-Wook;Yoon, Seon-Kyu;Kim, Sung-Kyu
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.441-447
    • /
    • 2006
  • See-through HMD type 3D display can provide an advantage of us seeing virtual 3D data used stereoscopic display simultaneously with real object(MR-Mixed Reality). But, when user sees stereoscopic display for a long time, not only eye fatigue phenomenon happens but also de-focus phenomenon of data happens by fixed focal point of virtual data. Dissatisfaction of focus adjustment of eye can be considered as the important reason of this phenomenon. In this paper, We proposed an application of multi-focus in see-through HMD as a solution of this problem. As a result, we confirmed that the focus adjustment coincide between the object of real world and the virtual data by multi-focus in monocular condition.

Musculoskeletal Rehabilitation Exercise Platform for Elderly based on MR (혼합현실 기반의 노인을 위한 근골격계 재활 운동 플랫폼)

  • Sung-Jun Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.63-70
    • /
    • 2023
  • In this paper, we propose a Mixed Reality based rehabilitation exercise solution with the goal of mitigating one of the most common chronic conditions among the elderly, musculoskeletal disorders. In modern society, as the number of elderly increases, more people engage in office work and engage in more sedentary activities. Due to repetitive work in the office, muscle strength decreases and this causes many difficulties in daily life. In this study, we developed a mixed reality based exercise platform to solve these chronic musculoskeletal diseases. VR is not appropriate for elderly because of dizziness. In addition, we developed a wearable sensor based on IMU and attached it to important parts of the upper body to motion tracking. We developed a algorithm synchronize to raw data from wearable sensor with in a vr avatar. Ederly can check in real time whether rehabilitation exercises are being performed accurately through the avatar.

The effects of maternal-child nursing clinical practicum using virtual reality on nursing students' competencies: a systematic review (가상현실을 이용한 모아간호 실습교육이 간호 대학생의 실습역량에 미치는 영향: 체계적 문헌고찰)

  • Hwang, Sungwoo;Kim, Hyun Kyoung
    • Women's Health Nursing
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2022
  • Purpose: This study aimed to investigate the effects of virtual reality used in maternal-child nursing clinical practicums on nursing students' competencies through a systematic review. Methods: The inclusion criteria were peer-reviewed papers in English or Korean presenting analytic studies of maternal-child nursing practicums using virtual reality. An electronic literature search of the Cochrane Library, CINAHL, EMBASE, ERIC, PubMed, and Research Information Sharing System databases was performed using combinations of the keywords "nursing student," "virtual reality," "augmented reality," "mixed reality," and "virtual simulation" from February 4 to 15, 2022. Quality appraisal was performed using the RoB 2 and ROBINS-I tools for randomized controlled trials (RCTs) and non-RCTs, respectively. Results: Of the seven articles identified, the RCT study (n=1) was deemed to have a high risk of bias, with some items indeterminable due to a lack of reported details. Most of the non-RCT studies (n=6) had a moderate or serious risk of bias related to selection and measurement issues. Clinical education using virtual reality had positive effects on knowledge, skills, satisfaction, self-efficacy, and needs improvement; however, it did not affect critical thinking or self-directed learning. Conclusion: This study demonstrated that using virtual reality for maternal-child nursing clinical practicums had educational effects on a variety of students' competencies. Considering the challenges of providing direct care in clinical practicums, virtual reality can be a viable tool that supplements maternal-child nursing experience. Greater rigor and fuller reporting of study details are required for future research.

A Study on the Marker Tracking for Virtual Construction Simulation based Mixed-Reality (융합현실 기반의 가상건설 시뮬레이션을 위한 마커 추적 방식에 관한 연구)

  • Baek, Ji-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.660-668
    • /
    • 2018
  • The main object of this study was to find a way to operate the marker for simulating a virtual construction using a MR(mixed reality) device. The secondary object was to find a way to extract the form-data from BIM data, and to represent the virtual object by the MR device. A tiny error of scale causes large errors of length because the architectural objects are very large. The scale was affected by the way that the camera of the MR device recognizes the marker. The method of installing and operating the marker causes length errors in the virtual object in the MR system. The experimental results showed that the error factor of the Virtual object's length was 0.47%. In addition, the distance between the markers can be decided through the results of an experiment for the multi-marker tracking system. The minimum distance between markers should be more than 5 m, and the error of length was approximately 23mm. If the represented virtual object must be less than 20mm in error, the particular mark should be installed within a 5 m radius of it. Based on this research, it is expected that utilization of the MR device will increase for the application of virtual construction simulations to construction sites.