• Title/Summary/Keyword: mixed polyols

Search Result 11, Processing Time 0.026 seconds

Preparation of Anionomeric Polyurethane Dispersions and Effects of Mixed Polyol on the Properties of Polyurethane (음이온성 폴리우렌탄 분산체의 제조와 우레탄 물성에 대한 폴리올의 혼합 효과)

  • Ahn, Jae-Beom;Cho, Hang-Kyu;Jeong, Chang-Nam;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.230-236
    • /
    • 1997
  • Polyurethane dispersions(PUD) were prepared from IPDI, PBEAG and PTMG as respectively ester type and ether type polyols and DMPA as anionic site. The effect of composition and type of polyols on the particle size of PUD and mechanical, thermal properties of PUD cast film were investigated. As the PTMG contents in mixed polyols increased, the particle size asymptotically increased and tensile strength showed a mild drop followed by a mild increase. This results from the incompatibility of two polyols, which was possibly identified by DSC analysis.

  • PDF

Effects of Physical Properties on Waterborne Polyurethane with Poly(tetramethylene glycol) (PTMG) and Polycaprolactone (PCL) Contents (폴리(테트라메틸렌 글리콜)(PTMG)/폴리카프로락톤)(PCL) 폴리올의 혼합비가 수분산계 폴리우레탄의 물성에 미치는 영향)

  • Yang, Yun-Kyu;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, waterborne polyurethanes were synthesized with poly(tetramethylene glycol) (PTMG), polycarprolactone PCL), dimethylol propionic acid (DMPA) and different molar ratio of chain extender. Particle size, polydispersity, thermal and mechanical properties of waterborne polyurethane were investigated. The particle size of waterborne polyurethane was in the range of 5∼200 nm and decreased with increasing the amounts of PCL and chain extender. Glass transition temperatures ($T_g$) were in the range of -70∼-45 ${\circ}C$ and increased with as PCL and chian extender (ED) contents increased. The $T_g$ of polyurethane prepared from the mixture showed similar trends as compared with those of in the same values of synthetic polyurethane using PTMG or PCL, respectively. Also, mechanical properties of mixed polyols (PTMG and PCL) were lower than those of PTMG and PCL, respectively.

Development of Gel Sheet Mask Based on Physical Properties Study of Tamarindus indica Seed Gum, Ethanol, Polyols, and Acid/Base Reaction (타마린드씨검과 에탄올, 폴리올 및 산·염기 반응의 물성 연구를 바탕으로 한 겔 시트 마스크의 개발)

  • Yeo, Hye Lim;Lee, Hyo Jin;Kang, Hae-Ran;Jung, So Young;Lee, So Min;Kim, Hyung Mook;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.305-316
    • /
    • 2021
  • This study relates to the development of a new gel sheet mask that finally does not require support based on the reactivity and acid/base reaction experiments of Tamarindus indica seed gum (TG), ethanol, and polyols. When TG and a specific alcohol was mixed at a certain mixing ratio, a transparent gel is formed by reaction with each component, and thus a gel sheet mask without support might be obtained using the mixture. In order to maximize skin tone improvement, a carbonation system of acid and base reactions was introduced, and skin brightness and moisturizing power were evaluated using a spectrophotometer and a moisture measuring device. Through this study, it is expected that the gelation reaction by hydrogen bonding of TG, ethanol, and polyols can be developed into various types, and the gel sheet mask formulation introduced in this study is expected to help develop new products in the future.

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

Synthesis and Characterization of Waterborne Polyurethanes Based on Isophorone Diisocyanate and Mixed Polyols of Poly(tetramethylene glycol)/Polydimethylsiloxane Diol (이소포론 디이소시아네이트와 폴리(테트라메틸렌 글리콜)/폴리디메틸실록산 디올 혼합 폴리올을 사용한 수분산성 폴리우레탄의 합성과 특성 분석)

  • Lee, Ji Hye;Hong, Seongdon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • Linear and cross-linked waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed diols of poly(tetramethylene glycol)/hydroxyethyl-terminated polydimethylsiloxane (PDMS-OH) were synthesized with dimethylol propionic acid as an anionic component, trimethylolpropane as a cross-linking agent, and butanediol as a chain extender and characterized. The hydrophobicity, $T_g$, stress-strain behaviors of the linear or cross-linked siloxane-containing WPU (WPU-Si) films with different PDMS content were analyzed by using water contact shape analyzer, energy dispersive spectrometer, dynamic mechanical analyzer, and universal testing machine. The results reveal that as the PDMS content increased, the hydrophobicity of WPU-Si films increased, $T_g$ moved to higher temperature, the breaking stress increased, and the breaking strain decreased.

Synthesis and Surface Properties of Fluorinated Polyurethanes (불소화된 폴리우레탄의 합성과 표면특성)

  • Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2001
  • Fluorinated polyurethane elastomers were synthesized by two step polyaddition of a perfluorinated polyether diol(trade name of Fomblin $ZDOL^{\circledR}$) and diisocyanates such as 4,4'-diphenyl methane diisocyanate(MDI) and toluene 2,4-diisocyanate(TDI). In order to control the Fomblin moiety of the soft segment in the synthesized elastomers to 10~50%, polyether type polyols such as polypropylene glycol(PPG) and polytetramethylene glycol(PTMG) were mixed during the polymerization reaction. Ethylene diamine or 1,4-butane diol was used as chain extenders. The structure and average molecular weight of the produced polyurethanes were confirmed by using FT-IR, $^1H-NMR$, DSC, and GPC. The surface properties were analyzed by using X-ray photoelectron spectroscopy(XPS) and contact angle meter. From the results of the surface analysis it was concluded that the fluorine groups were localized on the surface rather than the inside of the polyurethane films.

  • PDF

Preparation of Waterborne Polyurethanes Containing Polycarbonate Component and Their Applications to the Impregnation Finishing for Artificial Leathers (폴리카보네이트 성분을 포함하는 수분산 폴리우레탄의 제조와 인공피혁 함침가공에의 응용)

  • Lee, Kyoung-Woo;Ko, Jae-Hoon;Shim, Jae-Yun;Kim, Young-Ho
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2009
  • Waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed polyols of poly(tetramethylene glycol) (PTMG)/polycarbonate diol (PCD) were synthesized. The variation of mechanical and dyeing properties and alkali resistance of the WPU films were analyzed according to the polycarbonate (PC) content. The tensile strength of the films increased and the elongation at break decreased with the PC content in the WPU film. The incorporation of PC component in the WPU film did not affect the alkaline hydrolysis behavior. The synthesized WPU solutions were used as impregnating resins for the production of PET artificial leathers. The prepared WPU resins showed the good color fastness to washing, rubbing, and light of the artificial leather fabrics. The improvement of the properties became greater with the PC content in the WPU resin.

The Effect of Ionic Group and MMA Contents on the Physical Properties of PU/PMMA Hybrids (PU/PMMA Hybrids의 물성에 대한 이온성기와 MMA함량의 영향)

  • Jeong, Chang Nam;Cho, Hang Kyu;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.575-581
    • /
    • 1997
  • UDs were synthesized from two different polyols(PTMG, PBEAG), ionic chain extender(DMPA), EDA with $H_{12}-MDI$. PU/PMMA hybrids were prepared with free radical polymerization of MMA monomer in MMA-swelled PUD. PUD particle size and film properties were investigated ionic content and polyol type. Mechanical and thermal properties of PU/PMMA hybrid film were studied in terms of PU's ionic content and the venation of PU/PMMA compositions. As DMPA content increased from 2wt% to 10wt% in PUD, particle size of PUD decreased. PUD's particle size with ester type polyol was found to be smaller then ether type polyol used. Phase separation between hard segment(HS) and soft segment(SS) with ionic contents in PU was shown by the thermal, mechanical property measurement. Although the composition of MMA was changed from 0 to 40 wt% in PU/PMMA hybrid, the particle size of the hybrid did not increase. Using the ester type polyol, tensile strength of hybrid was found to increase by 2wt% - 6wt% DPMA content, but as higher content the strength of hybrid decreased. Moreover with the ether type polyol, tensile strength of hybrid was observed to increase by 2wt% - 4wt% DMPA content, while decreasing at higher content. PU and PMMA polymer molecule being mixed in molecular level was confirmed from the pattern of $T_g$ in DSC thermogram.

  • PDF