• Title/Summary/Keyword: mixed oxide catalysts

Search Result 54, Processing Time 0.023 seconds

Dehydrogenation of Ethylbenzene to Styrene with CO2 over TiO2-ZrO2 Bifunctional Catalyst

  • Burri, David Raju;Choi, Kwang-Min;Han, Sang-Cheol;Burri, Abhishek;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2007
  • In the dehydrogenation of ethylbenzene to styrene, CO2 could play a role as an oxidant to increase conversion of ethylbenzene and stability as well over TiO2-ZrO2 mixed oxide catalysts. TiO2-ZrO2 catalysts were prepared by co-precipitation method and were characterized by BET surface area, bulk density, X-ray diffraction, temperature programmed desorption of NH3 and CO2. These catalysts were found to be X-ray amorphous with enhanced surface areas and acid-base properties both in number and strength when compared to the respective oxides (TiO2 and CO2). These catalysts were found to be highly active (> 50% conversion), selective (> 98%) and catalytically stable (10 h of time-on-stream) at 600 oC for the dehydrogenation of ethylbenzene to styrene. However, in the nitrogen stream, both activity and stability were rather lower than those in the stream with CO2. The TiO2-ZrO2 catalysts were catalytically superior to the simple oxide catalysts such as TiO2 and ZrO2. The synergistic effect of CO2 has clearly been observed in directing the product selectivity and prolonging catalytic activity.

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Kim, Song-Hyoung;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at $600^{\circ}C$, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through $O_2-TPD$ experiment, it was found that the catalysts showing good catalytic activity showed $O_2$ desorption peak around $800^{\circ}C$.

Removal of SO2 over Binary Nb/Fe Mixed Oxide Catalysts (이성분계 Nb/Fe 혼합산화물 촉매에 의한 아황산가스의 제거)

  • Chung, Jong Kook;Lee, Seok Hee;Park, Dae Won;Woo, Hee Chul
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The reduction of $SO_2$ to elemental sulfur by CO over a series of iron niobate with nominal Nb/Fe atomic ratios of 1/0, 10/1, 5/1, 1/1, 1/5, 1/10 and 0/1 was studied with a flow fixed-bed reactor. Strong synergistic phenomena in catalytic activity and selectivity were observed for the iron niobate catalysts, and the best catalytic performance was observed for the catalyst with Fe/Nb atomic ratio of 1/1. The active phase of the activated iron niobate catalysts was identified to be $FeS_2$ using XRD and XPS. Selective reduction of $SO_2$ by CO was followed by the COS intermediate mechanism.

  • PDF

Solid-State 51V NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $ZrO_2-WO_3$

  • 손종락;이만호;도임자;배영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.856-862
    • /
    • 1998
  • Vanadium oxide catalyst supported on ZrO2-WO3 was prepared by adding the Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using solid-state 51V NMR and FTIR. In the case of calcination temperature at 773 K, for the samples containing low loading V2O5 below 18 wt % vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of ZrO2-WO3. The ZrV2O7 compound was formed through the reaction Of V2O5 and ZrO2 at 873 K and the compound decomposed into V2O5 and ZrO2 at 1073 K, which were confirmed by FTIR and 51V NMR.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

Acid Structure of MgO-SiO₂Binary Oxide Catalyst and Activity for Acid Catalysis

  • 손종락;박은희;김하원
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.203-208
    • /
    • 1997
  • A series of MgO-SiO2 catalysts were prepared by coprecipitation from the mixed solution of magnesium chloride and sodium silicate. Some of the sample were modified with 1 N H2SO4 and used as modified catalysts. The addition of MgO to SiO2 caused the increase of acidity and the shift of O-H and Si-O stretching bands of the silanol group to a lower frequency in proportion to the MgO content. The acid structure of MgO-SiO2 agreed with that proposed by Tanabe et al.. Catalytic activity for 2-propanol dehydration increased in relation to the increase of acidity and band shift to a lower frequency.

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperature (망간 산화물 촉매상에서 일산화탄소의 산화반응 : 소성온도의 영향)

  • Park, Jung-Hyun;Kim, Yun-Jung;Cho, Kyung-Ho;Kim, Eui-Sik;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • [ $MnO_2$ ]catalysts were prepared by precipitation method using potassium manganate and manganese acetate. The effect of calcination temperatures of $MnO_2$ catalysts for CO oxidation has been studied and their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$ sorption, temperature programmed reduction of $H_2$ ($H_2-TPR$), and temperature programmed desorption of CO (CO-TPD) techniques. $MnO_2$ calcined at $300^{\circ}C$ catalyst has a large surface area $181m^2/g$ having a narrow pore size distribution at 9 nm. The results of XRD and $H_2-TPR$ showed that the catalysts calcined at different temperatures showed mixed oxidation states of Mn such as $Mn^{4+}$ and $Mn^{3+}$. CO-TPD showed that the quantity of $CO_2$ desorbed was decreased with increasing the calcination temperatures. The catalytic activity over the catalyst calcined at $300^{\circ}C$ exhibited the highest conversion reaching to 100% at $200^{\circ}C$. $H_2O$ vapor showed an inhibiting effect on the efficiency of the catalyst because of co-adsorption with CO on the active sites of manganese oxide catalysts and the initial catalytic activity of CO oxidation could be regenerated by removing $H_2O$ vapor in the reactants.