• Title/Summary/Keyword: mixed inhibition

Search Result 340, Processing Time 0.031 seconds

Hydrophobic Interaction Between the Acyl Moiety of Choline Esters and the Active Site of Acetylcholinesterase

  • Myung, Pyung-Keun;Sok, Dai-Eun
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.290-292
    • /
    • 1995
  • Existence of a binding site for choline esters with an acyl chain of various sizes was examined by comparing the inhibitory potency of the respective compound. In contrast to acetylcholine, which showed a pure competitive pattern of inhibition, choline esters with an acyl chain of a long size ($C{\geq}5$) expressed a mixed type of inhibition. Binding of choline esters containing a long chain ($C_7-C_{12}$) to the hydrophobic region in the active site is deduced from a linear relationship between the $K_{iE}$ value and the size of acyl moiety, and a good hydrophobicity relationship. In addition, the non-competitive component in the inhibition of acetylcholinesterase seems to be due to the interaction of choline esters with both the hydrophobic site and the trimethylammonium-binding site in the active center of the acetylated acetylcholinesterase.

  • PDF

Phenolic constituents of Nelumbinis Semen and Their Tyrosinase Inhibitory Activity (연자육의 페놀성 성분 및 Tyrosinase 저해 활성)

  • Jeong, Ji Yeon;Mo, Eun Jin;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In the course of screening tyrosinase inhibitory activity, EtOAc-soluble fraction of Nelumbinis Semen (Seeds of Nelumbo nucifera) showed significant inhibition. Further fractionation of the EtOAc-soluble fraction resulted in 12 compounds, which were identified as 4-(hydroxymethyl)phenol (1), tyrosol (2), 4-(hydroxymethyl)benzaldehyde (3), 4-hydroxybenzoic acid (4), 4-(2-methoxyvinyl)benzene-1,2-diol (5), 2,6-dihydroxybenzoic acid (6), (2R-trans)-2,3-dihydro-3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one (7), (+)-catechin (8), elephantorrhizol (9), (+)-dehydrovomifoliol (10), (-)-boscialin (11) and uridine (12). Compounds 5 and 7 were first reported from this plant. Among the isolated compounds, compound 7 showed strong inhibition on tyrosinase activity with mixed mechanism of competitive and noncompetitive inhibition.

Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

Effect of S-AITA on Mild Steel Corrosion in Acidic Medium

  • Chandrasekaran, V.;Saravanan, J.
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.160-167
    • /
    • 2006
  • S-Acetyl Isothiourea Acetate (S-AITA) was synthesized in the laboratory and this influence on the inhibition of corrosion of mild steel in 1.11 N hydrochloric and 1.12 N sulphuric acids was investigated by weight loss and potentiostatic polarization techniques at 303K, 353K and 403K. These results were confirmed by the impedance technique. The inhibition efficiency increased with increase in concentration of inhibitor and decreased with rise in temperature from 303K to 403K. The maximum inhibition efficiency of S-AITA was found to be 99.95% (0.5% of S-AITA) at 303K in sulphuric acid. The adsorption of this compound on the mild steel surface from the acids has been found to obey Temkin's adsorption isotherm. The potentiostatic polarization results revealed that S-AITA was a mixed type inhibitor. Some thermodynamic parameters i.e., activation energy (Ea), free energy of adsorption (${\Delta}G_{ads}$), enthalpy of adsorption (${\Delta}H$) and entropy of adsorption (${\Delta}S$) were also calculated from weight loss data.

Effect of Paprika (Capsicum annuum L.) on Inhibition of Lipid Oxidation in Lard-Pork Model System During Storage at $4^{\circ}C$

  • Park, Jae-Hee;Kim, Chang-Soon
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.753-758
    • /
    • 2007
  • This study was conducted to investigate the antioxidant activity of paprika in the lard-pork model system adding ground fresh paprika (3%) and paprika powders (5%). Paprika powders were obtained through 4 drying methods (freeze, vacuum, far infrared-ray, and hot-air). In the lard and meat-fat mixture (containing lard 30%) containing paprika powders, the rate of increase in the peroxide value (POV) and thiobarbituric acid (TBA) value decreased notably during the refrigerated storage ($4^{\circ}C$) compared to the control without paprika. Therefore, paprika powders showed potent antioxidant activity and especially the freeze dried paprika powder revealed the most effective activity among them. However, its antioxidant activity was still lower than that of the fresh paprika because the addition of fresh paprika in the lard and meat-fat mixture merely increased the POV and TBA value. In linoleic acid oxidation, the addition of capsanthin 500 ppm to mixed linoleic acid and 10 ppm of $FeCl_3$ (LF) inhibited the formation of peroxides by 15.2% compared to LF, showing its iron scavenging ability. When mixed antioxidants (${\beta}$-carotene 200 ppm + ascorbic acid 100 ppm, capsanthin 200 ppm + ascorbic acid 100 ppm) were added in LF, synergistic effects were obtained with 57.7 and 60.4% of inhibition of peroxide formation, respectively.

Storage Stability of Ginger(Zingiber officinale Roscoe) Paste (생강 페이스트의 저장 안정성)

  • 조길석;장영상;신효선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1140-1146
    • /
    • 1997
  • Storage stability of ginger paste product was investigated from the standpoint of the inhibition of nonenzymatic browning and loss of gingerol contents. For the experimentations, control, 0.04% of N-acetyl-L-cysteine in ginger paste(NAcCys), and combination treatment of NAcCys, 0.92 of water activity and 6.30 of pH in ginger paste (mixed treatment) were stored at 3$0^{\circ}C$ for 40 days and analyzed for browning and gingerol contents. In addition the changes in sugars, organic acids, ascorbic acids, amino acids, and sensory quality were determined. The results revealed that the mixed treatment agent was effective in preventing both nonenzymatic browning and loss of gingerol contents. The inhibition by combination treatment might be resulted from the control of radical formations by sulfhydryl groups of NAcCys and the increase of diffusion resistance in lower water activity. Browning development and total gingerol contents were found to be correlated to some physicochemical characteristics of ginger paste; that is, browning development to amino acid and color value in sensory evaluation, and total gingerol contents to flavor in sensory evaluation.

  • PDF

Growth Characteristics and Optimal Culture Conditions of PVA-Degrading Strains (Polyvinyl Alcohol분해자화균의 성장특성과 최적 배양조건)

  • 김정목;조무환조윤래정선용
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.363-368
    • /
    • 1991
  • PVA degrading bacteria were isolated from water system, and identified as Pseudomonas cepacia and Pseudmonas pseudomallei, which were named as Pseudomonas sp. G5Y and Pseudomonas sp. PW. It was found out that those two kinds of bacteria have a symbiotic relationship to degrade PVA. For the mixed culture of these bacteria, the optimal conditions of pH, temperature, nitrogen source, and polymerization degree of PVA were found to be 7.5, $35^{\circ}C$, ammonium sulfate, and 500, respectively. Also, the growth of these bacteria was promoted by trace elements such as vitamin B1, B12, pyridoxine, and p-aminobenzoate, respectively. The specific growth rate of mixed bacteria was inhibited when the concentration of PVA was more than 20g/l. The substrate inhibition kinetics of the mixed culture was $${\mu}=\frac{0.065S}{2.56+S+(S^2/156}hr^{-1}$

  • PDF

Inhibition of Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosal Extracts by Inhibitors (효소 억제제에 의한 토끼의 점막 추출액중 로이신엔케팔린 및 [D-알라$^2$-로이신엔케팔린아미드의 분해 억제)

  • Chun, In-Koo;Park, In-Sook;Hyun, Jeen
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.175-185
    • /
    • 1996
  • To inhibit the enzymatic degradation of leucine enkephalin (Leu-Enk) and its synthetic analog. $[D-ala^2]$-leucine enkephalinamide (YAGFL), in the nasal, rectal and vaginal mucosal and serosal extracts of rabbits, effects of enzyme inhibitors such as amastatin (AM), puromycin (PM), thiorphan (TP), thimerosal (TM), EDTA, N-carboxymethyl-Phe-Leu (CPL), phenylethyl alcohol (PEA), phenylmercuric acetate (PMA), benzalkonium chloride (BC) and modified cyclodextrins, alone or in combination, were observed by assaying the pentapeptides staying intact during incubation. Mucosa extracts were prepared by exposing freshly-excised mucosal specimens mounted on Valia-Chien cells to isotonic phosphate buffer while stirring. The degradation of Leu-Enk and YAGFL followed the apparent first-order kinetics. The half-lives (mean) in the nasal, rectal and vaginal mucosal extracts were found to be 1.07, 0.33 and 1.14 hr for Leu-Enk, and 16.9, 6.2 and 6.8 hr for YAGFL, respectively. AM or PM, which is an aminopeptidase inhibitor, did not show a sufficient inhibition of Leu-Enk $(50\;{\mu}g/ml)$ degradation in all kinds of extracts. $Dimethyl-{\beta}-cyclodextrin\;(DM-{\beta}-CyD)$ decreased the degradation rate constants of Leu-Enk about 2 or 3 times, comparing with no additive. However, the use of mixed inhibitors of AM $(50\;{\mu}M)$/TM (0.25 mM)/EDTA (5 mM) resulted in a full stabilization of Leu-Enk by decreasing the degradation rate constants 67.3, 161.3 and 113.8 times far the nasal, rectal and vaginal mucosal extracts, respectively, comparing with no inhibitor. With mixed inhibitors, Leu-Enk remained intact more than 90% after 6 hr-incubation. In the stabilization of YAGFL, hM, TP or CPL alone showed little efffct, and some additives demonstrated a considerable inhibition of YAGFL degradation in the rank order of TM > BC > EDTA. However, the addition of mixed inhibitors such as TM (0.5 mM) and EDTA (5 mM) into the extracts protected YAGFL from the degradation by more than 85% even after 24 hr-incubation, suggesting almost complete inhibition of YAGFL degradation in the extract. On the other hand, $DM-{\beta}-CyD\;or\;hydroxypropyl-{\beta}-cyclodextrin$ (10%) were also found to retard enzymatic degradation rates of YAGFL markedly, and resulted in staying intact more than 80% of YAGFL in the nasal and vaginal mucosal extracts, and more than 60% in the rectal mucosal extract after 16 hr-incubation.

  • PDF

Inhibition of Acetolactate Synthase from Pea by Pyrimidine Derivatives (Pyrimidine 유도체에 의한 완두 Acetolactate Synthase의 저해에 관한 연구)

  • Joo, Young A;Kim, Dae Whang;Chang, Soo Ik;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.6
    • /
    • pp.304-312
    • /
    • 1997
  • Acetolactate synthase(ALS) is the common enzyme in the biosynthetic of valine, leucine, and isoleucine, and is the target of several classes of structually unrelated herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. In an effort to develop new and desirable herbicides, we have synthesized 4,6-dimethoxypyrimidine derivatives, and examined their inhibitory activities on pea ALS. The most active compound was found to be K11570 and $IC_{50}$ value for K11570 was 0.2 ${\mu}M.$ The inhibition of pea ALS by K11570 was biphasic, showing increased inhibition with incubation time. The K11570 showed mixed-type inhibition with respect to substrate pyruvate. Dual inhibition analysis of K11570 versus sufonylurea herbicide Ally and feedback inhibitor leucine revealed that three inhibitors were competitive for binding to ALS. The arginine modified enzyme showed decreased inhibition by K11570, sufonylurea Ally, and leucine, in constrast to, tryptophan modification did not affect on the sensitivity of ALS to the inhibitors.

  • PDF

Development of Selective Butyrylcholinesterase Inhibitors Using (R)-Lipoic Acid-Polyphenol Hybrid Molecules

  • Woo, Yeun-Ji;Lee, Bo-Hyun;Yeun, Go-Heum;Kim, Hyun-Ju;Ko, Jang-Myoun;Won, Moo-Ho;Lee, Bong-Ho;Park, Jeong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2997-3002
    • /
    • 2011
  • A series of hybrid molecules between (R)-lipoic acid (ALA) and the acetylated or methylated polyphenol compounds were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibition activities were checked. The $IC_{50}$ values of all hybrid molecules for a BuChE inhibition were lower than those of the single parent compounds. Specifically, ALA-acetyl protected caffeic acid (11, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.5{\pm}0.2\;{\mu}M$) and also had a great selectivity for BuChE over AChE (more than 800 fold). Inhibition kinetic study indicated that 11 is a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $1.52{\pm}0.18\;{\mu}M$.