• Title/Summary/Keyword: mixed $H_2H\infty$

Search Result 68, Processing Time 0.021 seconds

Implementation of the robust speed control system for DC servo motor using TDF compensator method (2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현)

  • Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC PROBLEMS WITH MIXED BOUNDARY CONDITION

  • Ohm, Mi Ray;Lee, Hyun Yong;Shin, Jun Yong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.585-598
    • /
    • 2014
  • In this paper we consider the nonlinear parabolic problems with mixed boundary condition. Under comparatively mild conditions of the coefficients related to the problem, we construct the discontinuous Galerkin approximation of the solution to the nonlinear parabolic problem. We discretize spatial variables and construct the finite element spaces consisting of discontinuous piecewise polynomials of which the semidiscrete approximations are composed. We present the proof of the convergence of the semidiscrete approximations in $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ normed spaces.

Control System Design for Marine Vessel Satisfying Mixed H2/H Performance Condition (H2/H 설계사양을 만족하는 선박운동제어계 설계에 관한 연구)

  • Kang, Chang-Nam;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.846-852
    • /
    • 2013
  • In this paper, the authors propose a new approach to control problem of the marine vessels which are moored or controlled by actuators. The vessel control problem in the specified area is called a DPS (Dynamic Positioning System). The main objective of this paper is to obtain more useful control design method for DPS. In this problem, a complicate fact is control allocation which is a numerical method for distributing the control signal to the controlled system. For this, many results have been given and verified by other researchers using two individual processes. It means that the controller design and control allocation design process are carried out individually. In this paper, the authors give more sophisticated design solution on this issue. In which the controller design and control allocation problem are unified by a robust controller design problem. In other word, the stability of the closed-loop system, control performance and allocation problem are unified by an LMI (Linear Matrix Inequality) constraint based on $H_2/H_{\infty}$ mixed design framework. The usefulness of proposed approach is verified by simulation with a supply vessel model and found works well.

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.579-591
    • /
    • 2006
  • In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.

A Mixed H2/H State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 선형행렬부등식 기반 혼합 H2/H 상태피드백 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.617-623
    • /
    • 2010
  • In this research an LMI based mixed $H_2/H_{\infty}$ controller for a Wheeled Inverted Pendulum is designed and a numerical simulation of that is carried out. The Wheeled Inverted Pendulum is a kind of an inverted pendulum that has two equivalent points. To keep that the naturally unstable equivalent point, a controller should control the wheels persistently. Dynamic equations of the Wheeled Inverted Pendulum are derived with considering inclined road that is one of the representative road conditions. A Linear Matrix Inequality method is used to construct a controller that is able to stabilize the Wheeled Inverted Pendulum with considering the inclined road condition aggressively. Various numerical simulations show that the LMI based controller is doing well on not only flat road but also inclined road condition.

Design of Robust Motion Controllers with Internal-Loop Compensator (내부루프 보상기를 가지는 강인 동작 제어기의 설계)

  • Kim, Bong-Geun;Jeong, Wan-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1501-1513
    • /
    • 2001
  • Disturbance observer, adaptive robust control, and enhanced internal model control are model based disturbance attenuation methods famous for robust motion controller which can satisfy desired performance and robustness of high-speed/high-accuracy positioning systems. In this paper, these are shown to be the same scheme with different parameterizations. To do this, a generalized framework, called as RIC(robust internal-loop compensator) is proposed and the conventional schemes are analyzed in the RIC framework. Through this analysis, it can be shown that there are inherent similarities between the schemes and advantages of the RIC in the viewpoint of controller design. This is verified through simulations and experiments.

The Optimization of Expression System for Recombinant Protein Production by Pichia pastoris and Hansenula polymorphs (유전자 재조합 단백질 생산에 있어서 Pichia pastoris와 Hansenula polymorpha를 이용한 최적 발현 방법 개발)

  • 강환구;전희진;김재호
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.174-180
    • /
    • 2000
  • Pichia pastoris and Hansenula polymorpha, the methylotrophic yeasts have been widely used as a host for the production of e eudaryotic proteins due to the advantages related to their inherited characters. This paper describes the method to enhance t the productivity of recombinant proteins by P. pastoris and H. po$\psi$morpha. In the production of recombinant proteins using a f fed batch fermentation system, the effects of specific growth rate on the specific expression rate of re$\infty$mbinant proteins w were studied. In both species, the expression system of recombinant proteins using the fed batch fermentation was optimezed.

  • PDF

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF