• Title/Summary/Keyword: mix-proportion

Search Result 353, Processing Time 0.031 seconds

The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate (경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Sang-Ho;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

The Selection of Optimal Mixing Proportion and Cost Analysis in the SFC (초유동 콘크리트의 최적배합 선정방법 및 경제성 분석)

  • Park, Chil-Lim;Kim, Moo-Han;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.262-268
    • /
    • 1998
  • This research is to examine the selected method of optimal mixing proportion and cost analysis in the super flowing concrete. As confined water $ratio($\beta_p$)$ and K is introduced, itis to establish optimal mixing design of super flowing concrete according to the steps of paste, mortar and concrete. From paste and mortar test, it was led to $$\beta_p$$ and $K_p$satisfying the optimum condions depending on the kinds of binders. Then $$\beta_p$$ and $K_p$ is reflected to the mix condition of super flowing concrete. The result of test, the mix condition of super flowing concrete satisfied the quality performance of concrete with adjustment of additional rate of the superplasticizer. Besides, in case of design strength $350kg/\textrm{cm}^2$ of concrete, material cost in super flowing concrete is able to be reduced 5~16% in replacement of fly ash 30% in ordinary portland cement and slag cement.

  • PDF

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

Application of support vector regression for the prediction of concrete strength

  • Lee, Jong-Jae;Kim, Doo-Kie;Chang, Seong-Kyu;Lee, Jang-Ho
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.299-316
    • /
    • 2007
  • The compressive strength of concrete is a commonly used criterion in producing concrete. However, the test on the compressive strength is complicated and time-consuming. More importantly, since the test is usually performed 28 days after the placement of the concrete at the construction site, it is too late to make improvements if unsatisfactory test results are incurred. Therefore, an accurate and practical strength estimation method that can be used before the placement of concrete is highly desirable. In this study, the estimation of the concrete strength is performed using support vector regression (SVR) based on the mix proportion data from two ready-mixed concrete companies. The estimation performance of the SVR is then compared with that of neural network (NN). The SVR method has been found to be very efficient in estimation accuracy as well as computation time, and very practical in terms of training rather than the explicit regression analyses and the NN techniques.

Application of PBMD for High Strength Concrete Mix Proportion Design (고강도 콘크리트의 성능기반형 배합설계방법)

  • Lee, Sang-Won;Oh, Il-Sun;Lee, Hoo-Seok;Park, Sung-Hwan;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.405-406
    • /
    • 2010
  • This paper is a study about application of recently proposed Performance Based Mixture Design (PBMD) for design of high strength concrete (HSC) to obtain HSC mix proportion that satisfies required performances. Based on extensive experimental results obtained for various material and performance parameters of HSC, the application feasibility of the developed PBMD procedure for HSC has been verified. Also, the proposed PBMD procedure has been used to perform application examples to obtain desired target performances of HSC with optimum concrete mixture proportions using locally available materials, local environmental conditions, and available concrete production technologies.

  • PDF

Optimum Mix Proportion for Recycling Waste Foundry Sand as Fine Aggregate in Concrete

  • Moon, Han-Young;Song, Yong-Kyu;Park, Jae-Jin;Park, Yun-Wang;Kim, Ki-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.576-580
    • /
    • 2001
  • The amount of the waste foundry sand(WFS) produced in Korea is over 700,000 ton per year, but most WFS buries itself and only 5~6% or total WFS is recycled in the way or mixing as fine aggregate for construction materials. A bY-product, WFS produced from a foundry may affect our environmental contamination if it is discharged without proper waste disposal in Korea. Therefore in this study, we performed the fundamental research about specific gravity, absorption, grading curve, finesse modulus of WFS, different aggregates and the flow and the compressive strength of mortar with WFS replaced as fine aggregate, the workability and compressive strength of concrete with WFS as fine aggregate aimed at the specified strength of 270 kgf/$\textrm{cm}^2$, and then optimum mix proportion of concrete was determined

  • PDF

A Study on the Influence Factors on Crack Properties of CFRD Face Slab Concrete (CFRD 차수벽 콘크리트의 균열 특성에 미치는 각종 영향요인에 관한 연구)

  • 최세진;임정열;김완영;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.109-117
    • /
    • 2000
  • CFRD(Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, plastic shrinkage and bad compaction etc. Because of these cracks of concrete induce structural problem and decrease durability of dam, it is need to reduce crack of face slab concrete. This is an experimental study to analyze the influence factors on crack properties of CFRD face slab concrete. For this purpose, various mix proportion of CFRD face slab concrete and concrete using PPF(polypropylene fiber0 and fly ash was selected. And tests for drying shrinkage, bonding strength, water permeability and plastic shrinkage were performed, and then CFRD D and PPC of those mix proportion were placed in CFRD field. According to test results, it was found that the bonding strength of C1(compact sufficiently) was higher about 10~20% than that of C2(compact insufficiently). And the engineering properties of PPC(concrete using PPF) and FAC(concrete using fly ash) were better than those of the others ; the permeability of PPC and FAC after 8 weeks curing was little lower than that of CFRD D, and plastic shrinkage crack of PPC and FAC was lower 40~60% than crack of CFRD D.

The Experimental Study on the Development of Estimation Technique for the Mix Proportion of Hardened Concrete (경화 콘크리트의 배합비 추정기법 개발에 관한 실험적 연구)

  • 이준구;박광수;김석열;김명원;김관호;박미현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.961-966
    • /
    • 2000
  • It is difficult to change or remedy concrete structure after hardened. It is usual to evaluate the quality of hardened concrete using several test method. This study was performed to make fundamental data that could be used to evaluate the quality of hardened concrete. This study is to estimate mix proportion of hardened concrete. Each elements of concrete needed different estimation methods. First, the cement that handled by the most important compounds measured by XRF(X-ray fluorecence) machine with scanning Ca-K${\alpha}$. Second, the coarse aggregate that divided by maximum size measured by the area comparison method that starts from the assumption of uniform distribution. Third, the fine aggregate measured by the weight comparison method that needs several prerequsite constants which concerned cement hydration reaction. Fourth, the water content would be estimated by expert system that has data base of design data, the contents of above estimation results, the characteristics of concrete strength. As the result of the above research, some conclusions are as follows. The cement estimation method resulted by reliability of mean 96.7%, standard deviation 3.92. The area comparison method resulted by reliability of mean 95.3%, standard deviation 2.08. The weight comparison method resulted by reliability of mean 93.3%, standard deviation 3.35.

Strength deterioration of reinforced concrete column sections subject to pitting

  • Greco, Rita;Marano, Giuseppe Carlo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.643-671
    • /
    • 2015
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standards impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete column section load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of reinforced concrete columns sections.