• Title/Summary/Keyword: mix ratio

Search Result 802, Processing Time 0.023 seconds

Characteristics of the Warm-Mix Asphalt Mixtures Using the Modified Sulfur Binder (개질 유황결합재를 사용한 중온아스팔트 혼합물의 특성)

  • Kim, Se-Won;Park, Hung-Suck;Kim, Jong-Kyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.489-495
    • /
    • 2016
  • In this study, the Warm-Mix Asphalt was prepared using a modified Sulfur Binder mixed with an additive of a polymer component in sulfur, which is an industrial by-product generated in the crude oil refining process. The dynamic stability and durability characteristics of the prepared Warm-Mix Asphalt was evaluated by the indirect tensile strength, the tensile strength ratio before and after water immersion and freezing-thawing, and the dynamic stability by wheel tracking test. The Warm-Mix Asphalt Mixtures using Modified Sulfur Binder has a tensile strength ratio before and after water immersion of 0.88, which is about 1.13 times that of the Warm-Mix formed modified Asphalt, and the tensile strength ration before and after freezing-thawing is also 0.82, thus, all tensile strength ratios satisfied the KS quality standard value of 0.75 or more. The indirect tensile strength was 1.6MPa which was twice the KS quality standard value of 0.8MPa, and about 1.24 times higher than that of normal heated asphalt 1.29MPa. In addition, the dynamic stability by the wheel tracking test was 14,075 times/mm, which was about 15 times higher than that of normal heated asphalt and about 3 times higher than that of the Warm-Mix formed modified Asphalt, showing excellent resistance to plastic deformation such as fatigue cracks.

Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio (골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합)

  • 최연왕;정문영;정지승;문대중;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF

A Study on the Properties of Mix Design for Cementitious Material used in Modern Architecture (근대 건축에 사용된 시멘트계 재료의 배합 특성)

  • Lee, Chan-Young;Ahn, Jae-Cheol;Song, Jong-Mok;Kang, Byeung-Hee;Kim, Ki-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.215-216
    • /
    • 2012
  • The purpose of this study is to analyze the situation and feature of construction technology by analysis properties and the mixture proportion of a reinforced concrete building from the modern domestic and to leave technological records for the optimal maintenance of the cultural heritage. The study says, the case of the 1:3:6 mix concrete has been standard regardless of the kind of structures after the concrete has being used in earnest, However, The strength range is big from Water-Cement ratio difference according to the concrete casting site.

  • PDF

Experimental Study on the Mix Design Method using the Fracture Energy and the other Parameters in Concrete. (콘크리트의 파괴에너지와 다른 재료특성을 이용한 배합설계법에 관한 실험연구)

  • 강성후
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 1992
  • 콘크리트 압축강도가 설계의 규준이 될 경우 배합비를 결정하는 방법은 여러 가지가 있으나, 파괴에너지 및 탄성계수와 같은 규준이 주어질 경우 배합비 결정에 적용하는 방법은 거의 없다. 이를 위하여 본 연구는 콘크리트 재료성질의 관계에 관한 배합설계도(Mix design diagram)를 제안하였다. 이 방법은 시멘트량, 물-시멘트 비가 콘크리트의 압축강도, 탄성계수, 할렬인장강도, 파괴에너지 그리고 콘크리트 특성길이(Characteristic length)에 주는 영향을 실험에 의하여 규명하였다. 시편제작을 위하여 각기 다른 물-시멘트비와 워커빌리티를 갖는 6종류의 무근콘크리트 배합이 사용되었다.

The Effect of Thermal Properties on Temperature Development of Concrete (열적성질을 고려한 콘크리트의 수화발열특성에 관한 연구)

  • Shon, Myung-Soo;Park, Yon-Dong;Kim, Hoon;Kim, Ho-Young;Lee, Yang-Soo;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.97-102
    • /
    • 1997
  • In this study, a predictive method which was modified from KIshi's model for the temperature development of concrete was developed by using mineral compounds of clinker and pozzolans. Temperature dependent heat generation of reaction was also considered. Specific heat considering the effect of mix proportion and temperature was calculated with experimental data in the literatures. Thermal conductivity considering the effect of mix proportion and temperature was experimentally investigated. Through this research it was found that the developed method considering thermal properties accurately predicted adiabatic temperature rise of concrete without the experiment. It was also found that the thermal conductivity of concrete could be predicted by the volume ratio of each component of mix proportion and was independent of temperature within the normal climatic range.

  • PDF

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • You, Jei-Jun;Lee, Han-Seung;Bae, Kyu-Woong;Lee, Sang-Sup;Yeon, Gyu-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

An Experimental Research on Changes of Properties in Flow by Slump Flow Type Concrete Mix Design Adjustment of the Way according to the Various Gmax Size (굵은 골재 최대치수 변경에 따른 슬럼프 플로 타입 콘크리트의 배합조정방법별 유동특성변화에 대한 실험적 연구)

  • Kwon, Hae-Won;Seo, Il;Lee, Jin-Woo;Park, Hee-Gon;Lee, Jae-Sam;Lee, Jong-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.67-68
    • /
    • 2010
  • Recently, there were not enough studies regarding the mix adjustment and changes of normal physical properties of slump flow type concrete in domestically. Therefore in this paper, it is aimed securing the fundamental data about flow its mix design method by experimental research. The experiment includes the adjustment of the way for slump flow type concrete by the variation of size of coarse aggregate. In the result, it is advisable raising the ratio of fine aggregate and unit water amount by considering the specific surface when increasing the Gmax size.

  • PDF

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF