• Title/Summary/Keyword: mitotic arrest

Search Result 45, Processing Time 0.024 seconds

Cells Transformed by PLC-Gamma 1 Overexpression are Highly Sensitive to Clostridium difficile Toxin A-Induced Apoptosis and Mitotic Inhibition

  • Nam, Hyo-Jung;Kang, Jin-Ku;Chang, Jong-Soo;Lee, Min-Soo;Nam, Seung-Taek;Jung, Hyun-Woo;Kim, Sung-Kuk;Ha, Eun-Mi;Seok, Heon;Son, Seung-Woo;Park, Young-Joo;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.50-57
    • /
    • 2012
  • Phospholipase C-${\gamma}l$ (PLC-${\gamma}l$) expression is associated with cellular transformation. Notably, PLC-${\gamma}$ is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-${\gamma}l$ overexpression. We found that PLC-${\gamma}l$-transformed cells, but not vector-transformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-${\gamma}l$-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-${\gamma}l$-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-${\gamma}l$ is highly up-regulated.

Action of Protein Kinase A and C Activators on Germinal Vesicle Breakdown and One-Cell Embryos in the Mouse (생쥐 GV난자와 1-세포기 배아의 핵막붕괴에 미치는 Protein Kinase A와 C의 작용)

  • 이대기;김경진;조완규
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1989
  • Expedments were perfonned to examine the role of cAMP-dependent protein kinase (PK-A) and diacylglycerol-dependent protein kinase (PK-C) during the meiodc resumption and the first mitotic cell cycle of mouse embryogenesis. Mejoric GV oocytes and one-cell embryos derived from in vitro fertilization were cultured in vitro, and morphological changes in response to activators of PK-A and PK-C were examined. Treatments with a membrane-permeable cAMP analog, dbcAMP (0.1 mg/mi), phosphodiesterase inhibitor, IBMX (0.1 mM), biologically active phorbol ester, WA (10 nglmi), or a synthetic diacylglycerol, sn-diC8 inhibited resumption of melosis. Combination of PK-A and PK-C activator brought about furiher inhibition. On the contrary, dbcAMP (0.1 mg/mi), IBMX (0.2 mM), WA (10 nglml), and sn-diC8 (0.5 mM) did not inhibit pronucleus membrane breakdown (PNBD) when added S or G2 phase of cell cycle. However, activators of PK-C inhibited cleavage of one-cefl embryos. This result indicates that the action mechanism of PK-A and PK-C on dissolution of nuclear membrane in primary meiotic arrest oocytes may be different from that of mitotic one-cell embryos.

  • PDF

Inhibitory Effects and Molecular Mechanism of Adipocyte Differentiation by Rosae laevigata Fructus Ethanol Extracs (금앵자 에탄올 추출물에 의한 3T3-L1 지방세포의 분화억제 효과와 그 메커니즘 규명)

  • Jeong, Hyun Young;Jeong, In Kyo;Nam, So Yeon;Yun, Hee Jung;Kim, Byung Woo;Kwon, Hyun Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Obesity is caused by excess accumulation of body fat and contributes to various pathological disorders such as diabetes, hypertension, cardiovascular disease, and cancer. In this study, we investigated the effect of a 30% ethanol extract of Fructus Rosae laevigata (RLE) on adipogenesis in 3T3-L1 adipocytes, measured by triglyceride accumulation and expression of adipogenesis-related transcription factors during differentiation of pre-adipocytes into adipocytes. RLE decreased the intracellular triglyceride contents (assessed by Oil Red-O staining) in a dose-dependent manner. It also downregulated the expression of adipogenic transcription factors and inhibited cell proliferation during the mitotic clonal expansion phase of adipocyte differentiation by inducing G1 phase arrest. We investigated the alterations in the levels of G1 phase arrest-related proteins. The expression of p21 protein significantly increased, while the levels of Cyclin E, Cdk2, and phospho-Rb decreased in a dose-dependent manner in 3T3-L1 cells treated with RLE. These results suggest that RLE inhibits the differentiation of 3T3-L1 adipocytes by suppressing the expression of adipogenic transcription factors and inducing G1 phase arrest in the early stages of adipocyte differentiation.

Tumor Suppressor Protein p53 Promotes 2-Methoxyestradiol-Induced Activation of Bak and Bax, Leading to Mitochondria-Dependent Apoptosis in Human Colon Cancer HCT116 Cells

  • Lee, Ji Young;Jee, Su Bean;Park, Won Young;Choi, Yu Jin;Kim, Bokyung;Kim, Yoon Hee;Jun, Do Youn;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1654-1663
    • /
    • 2014
  • To examine the effect of tumor suppressor protein p53 on the antitumor activity of 2-methoxyestradiol (2-MeO-$E_2$), 2-MeO-$E_2$-induced cell cycle changes and apoptotic events were compared between the human colon carcinoma cell lines HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$). When both cell types were exposed to 2-MeO-$E_2$, a reduction in the cell viability and an enhancement in the proportions of $G_2/M$ cells and apoptotic sub-$G_1$ cells commonly occurred dose-dependently. These 2-MeO-$E_2$-induced cellular changes, except for $G_2/M$ arrest, appeared to be more apparent in the presence of p53. Immunofluorescence microscopic analysis using anti-${\alpha}$-tubulin and anti-lamin B2 antibodies revealed that after 2-MeO-$E_2$ treatment, impaired mitotic spindle network and prometaphase arrest occurred similarly in both cell types. Following 2-MeO-$E_2$ treatment, only HCT116 ($p53^{+/+}$) cells exhibited an enhancement in the levels of p53, p-p53 (Ser-15), $p21^{WAF1/CIP1}$, and Bax; however, the Bak level remained relatively constant in both cell types, and the Bcl-2 level decreased only in HCT116 ($p53^{+/+}$) cells. Additionally, mitochondrial apoptotic events, including the activation of Bak and Bax, loss of ${\Delta}{\psi}m$, activation of caspase-9 and -3, and cleavage of lamin A/C, were more dominantly induced in the presence of p53. The Bak-specific and Bax-specific siRNA approaches confirmed the necessity of both Bak and Bax activations for the 2-MeO-$E_2$-induced apoptosis in HCT116 cells. These results show that among 2-MeO-$E_2$-induced apoptotic events, including prometaphase arrest, up-regulation of Bax level, down-regulation of Bcl-2 level, activation of both Bak and Bax, and mitochondria-dependent caspase activation, the modulation of Bax and Bcl-2 levels is the target of the pro-apoptotic action of p53.

siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells

  • Ye, Qi-Fa;Zhang, Yi-Chuan;Peng, Xiao-Qing;Long, Zhi;Ming, Ying-Zi;He, Le-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2485-2489
    • /
    • 2012
  • Purpose: Notch is an important signaling pathway that regulates cell fate, stem cell maintenance and the initiation of differentiation in many tissues. It has been reported that activation of Notch-1 contributes to tumorigenesis. However, whether Notch signaling might have a role in chemoresistance of prostate cancer is unclear. This study aimed to investigate the effects of Notch-1 silencing on the sensitivity of prostate cancer cells to docetaxel treatment. Methods: siRNA against Notch-1 was transfected into PC-3 prostate cancer cells. Proliferation, apoptosis and cell cycle distribution were examined in the presence or absence of docetaxel by MTT and flow cytometry. Expression of $p21^{waf1/cip1}$ and Akt as well as activation of Akt in PC-3 cells were detected by Western blot and Real-time PCR. Results: Silencing of Notch-1 promoted docetaxel induced cell growth inhibition, apoptosis and cell cycle arrest in PC-3 cells. In addition, these effects were associated with increased $p21^{waf1/cip1}$ expression and decreased Akt expression and activation in PC-3 cells. Conclusion: Notch-1 promotes chemoresistance of prostate cancer and could be a potential therapeutic target.

Cellular Toxic Effects and Action Mechanisms Of 2,2', 4,6,6'-Pentachlorobiphenyl

  • Kim Sun-Hee;Shin Kum-Joo;Kim Dohan;Kim Yun-Hee;Ryu Sung Ho;Suh Pann-Ghill
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.1-20
    • /
    • 2004
  • Polychlorinated biphenyls (PCBs), one a group of persistent and widespread environmental pollutants, have been considered to be involved in immunotoxicity, carcinogenesis, and apoptosis. However, the toxic effects and physical properties of a PCB congener are dependent on the structure. In the present study, we investigate the toxic effects and action mechanisms of PCBs In cells. Among the various congeners tested, 2,2',4,6,6'-PeCB-pentachlorobiphenyl (PeCB), a highly ortho-substituted congener having negligible binding affinity for aryl hydrocarbon receptor (AhR), caused the most potent toxicity and specific effects in several cell types. 2,2',4,6,6'-PeCB induced apoptotic cell death of human monocytic cells, suggesting that PCB-induced apoptosis may be linked to immunotoxicity. In addition, 2,2',4,6,6'-PeCB induced mitotic arrest by interfering with mitotic spindle assembly in NIH3T3 fibroblasts, followed by genetic instability which triggers p53 activation. Which suggests that 2,2',4,6,6'-PeCB may be involved in cancer development by causing genetic instability through mitotic spindle damage. On the other hand, 2,2',4,6,6'-PeCB increased cyclooxygenase-2 (COX-2) involved in cell survival through ERK1/2 MAPK and p53 in Rat-1 fibroblasts and mouse embryonic fibroblasts, triggering compensatory mechanism for abating its toxicity. Taken together, these results demonstrate that PCB congeners of different structure have distinct mechanism of action and 2,2',4,6,6'-PeCB causes several toxicity as well as compensatory mechanism in cells.

  • PDF

DRG2 Regulates G2/M Progression via the Cyclin B1-Cdk1 Complex

  • Jang, Soo Hwa;Kim, Ah-Ram;Park, Neung-Hwa;Park, Jeong Woo;Han, In-Seob
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.699-704
    • /
    • 2016
  • Developmentally regulated GTP-binding protein 2 (DRG2) plays an important role in cell growth. Here we explored the linkage between DRG2 and G2/M phase checkpoint function in cell cycle progression. We observed that knockdown of DRG2 in HeLa cells affected growth in a wound-healing assay, and tumorigenicity in nude mice xenografts. Flow cytometry assays and [$^3H$] incorporation assays indicated that G2/M phase arrest was responsible for the decreased proliferation of these cells. Knockdown of DRG2 elicited down-regulation of the major mitotic promoting factor, the cyclin B1/Cdk1 complex, but upregulation of the cell cycle arresting proteins, Wee1, Myt1, and p21. These findings identify a novel role of DRG2 in G2/M progression.

Viability of Nuclear Transfer Bovine Embryos after Embryo Transfer (소 핵이식란의 이식 후 생존성에 관한 연구)

  • 정희태;임석기;박춘근;양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.2
    • /
    • pp.153-161
    • /
    • 1998
  • This study was conducted to examine the viability of nuclear transfer bovine embryos following embryo transfer. Donor embryos were treated with nocodazole to arrest their cell-cycle-stage at mitotic(M) phase. After releasing from nocodazole blastomeres were separated and transferred into the enucleated oocytes(BC), or cultured in medium with aphidicolin. Freshly cleaved blastomeres within 1.5h after cleavage(AC) and non-cleaved ones up to 3h after releasing from nocodazole(NC) were transferred into the enucleated oocytes. Blastocysts derived from nuclear transfer were transferred to Day 7~8 recipient cows. Some blastocysts were vitrified and thawed before embryo transfer. Developmental rates to the blastocyst stage were higher in AC(18.1%, P<0.05) than BC(8.6%) and NC(5.1%). Blastocyst development slightly enhanced with aphidicolin(1~2$\mu\textrm{g}$/ml) treatment(16.9~22.6%) compared to non treated control(11.1%). Survival rate fo vitrified nuclear transfer embryos after thawing was 75%(24/32). Twnety-three vitrified nuclear transfer embryos and 3 fresh ones were transferred to 23 recipients, 6 heads were pregnant and 1 male calf(24 kg) was born from a recipient cow recevied one vitrifiedthawed nuclear transfer embryo at 277 days after embryo transfer. This result suggests that the nuclear transfer embryos can developed to term after vitrification andembryo transfer.

  • PDF

Effect of the Paclitaxel and Radiation on the Gastric Mucosa of the Rat (흰쥐의 위점막에 Paclitaxel (Taxol)과 방사선조사의 효과)

  • Lee Kyung-ja;Koo Heasoo
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.314-320
    • /
    • 1999
  • Purpose : Paclitaxel is a chemotherapeutic agent with potent microtubule stabilizing activity that arrests cells in $G_2$-M phase. Because $G_2$ and M are the most radiosensitive phase of the cell cycle, paclitaxel has potential role as a cell-cycle specific radiosensitizer. This study was peformed to see the effects of paclitaxel on the radiation-induced damage of gastric mucosa of the rat. Materials and Methods : The rats were divided into the three groups i.e., paclitaxel alone group, radiation alone group and, a combination of paclitaxel and radiation in combined group. A single intraperitoneal infusion of paclitaxel (10 mg/kg) was done in paclitaxel alone group. In radiation alone group, a single fraction of irradiation (8 Gy, x-ray) to the whole abdomen and, a combination of a single fraction of irradiation (8 Gy, x-ray) to the whole abdomen was given 24 hrs after paclitaxel infusion In combined group of paclitaxel and radiation. The incidence of mitosis and apoptosis as well as histologic changes of the gastric mucosa were evaluated at 6 hrs, 24 hrs, 3 days and 5 days after treatment. Results : The number of the mitosis was not increased by paclitaxel infusion. The incidence of the apoptosis was similar from 6 hrs to 3 days after paclitaxel infusion and was decreased at 5 days. Paclitaxel induced minimal glandular dilatation and cellular atypia of gastric mucosa at 24 hrs and 3 days. In irradiation group, the incidence of apoptosis was $6.0\%$ in 6 hrs and $1.25\%$ in 24 hrs after irradiation and minimal glandular dilatation and cellular atypia were noted throughout the experimental period. The incidence of apoptosis in the combined group of paclitaxel and irradiation ($4.5\%$) was significantly higher than irradiation alone group ($1.25\%$) at 3 days (p<0.05). Conclusion : Paclitaxel had no mitotic on mitotic arrest in gastric mucosa of the rat. Increased number of apoptosis in combined paclitaxel and irradiation group suggested the additive effects of paclitaxel on irradiation.

  • PDF

The Cell Cycle Dependence and Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK선암 세포주에서 방사선에 의한 Apoptosis와 세포 주기)

  • Lee Hyung Sik;Park Hong Kyu;Hur Won Joo;Seo Su Yeong;Lee Sang Hwa;Jung Min Ho;Park Heon Joo;Song Chang Won
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • Purpose : The relationship between environmental PH on the radiation induced-apoptosis in SCK mammary adenocarcinoma cells and cell cycle dependence was investigated. Material and Methods : Mammary adenocarcinoma cells of A/J mice(SCK cells) in exponential growth phase were irradiated with a $l37^Cs$ irradiator at room temperature. The cells were irradiated 1 hour after the media was replaced with fresh media at a different pHs. After incubation at $37^{\circ}C$ for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Bssults : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. When the cells were irradiated and maintained in pH 7.5 medium, the percentage of cells in $G_2/M$ phase rapidly increased to about $70\%$ at 12 h after an exposure to 120y and returned to control level by 36 h. The percentage of cells in G1 phase decreased as the percentage of cells in $G_2/M$ increased. On the other hand, in pH 6.6 medium the percentage of cells in G2/M phases gradually increased to about $45\%$ at 24 h after 12Gy irradiation and then slowly recessed and consequently, as much as $30-35\%$ of the cells were still in the Ga/M phase 48 h after irradiation. The percentage of cells in G1 phase then increased as the Ga/M arrest began to recede. The radiation-induced Ga/M arrest in PH 0.0 medium lasted markedly longer than that in pH 7.5 medium. Conclusion : Radiation-induced apoptosis in SCK tumor cells are reversely suppressed in an acidic environment. Radiation-induced Ga/M arrest is prolonged in an acidic environment indicating that the suppression of radiation-induced apoptosis and prolongation of radiation-induced Ga/M arrest in an acidic environment are related.

  • PDF