• Title/Summary/Keyword: mitotic activity

Search Result 83, Processing Time 0.023 seconds

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim;Hak Rim Kim;Rajnikant Patel
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.340-349
    • /
    • 2023
  • Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

  • You, Mi-Kyoung;Kim, Min-Sook;Jeong, Kyu-Shik;Kim, Eun;Kim, Yong-Jae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS: Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS: Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION: Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

Lack of Any Relationship between ABO and Rh Blood Groups and Clinicopathological Features in Patients with Gastrointestinal Stromal Tumors: Turkish Oncology Group

  • Urun, Yuksel;Utkan, Gungor;Yalcin, Suayib;CosKun, Hasan Senol;Kocer, Murat;Ozdemir, Nuriye Yildirim;Kaplan, Mehmet Ali;Arslan, Ulku Yalcintas;Ozdemir, Feyyaz;Oztuna, Derya;Akbulut, Hakan;Icli, Fikri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4129-4131
    • /
    • 2012
  • Background: An association between the ABO blood group and the risk of certain malignancies, including pancreatic and gastric cancer, has been reported previously. However, it is unclear whether this association is valid for gastrointestinal stromal tumors (GIST). In this study, ABO blood groups and the Rh factor were investigated in a series of GIST cases. Material and Methods: In 162 patients with GIST, blood group and Rh factor were examined and compared with a control group of 3,022,883 healthy volunteer blood donors of the Turkish Red Crescent between 2004 and 2011. The relationship of blood groups with tumor size, mitotic activity, and age were also evaluated. Results: Overall, the ABO blood group and Rh factor distributions of the 162 patients with GIST were similar to those of the general population. There were no significant differences between both ABO blood types and Rh factor in terms of tumor size, mitotic activity, and age. Conclusion: This is the first study reported on this issue. In our study, we didn't find any relationship between GIST and ABO blood group and Rh factor. However further studies with larger number of patients are needed to establish the role of blood groups in this population.

Effect of Two Doses of Different Zinc Sources (Inorganic vs. Chelated form) on the Epithelial Proliferative Activity and the Apoptotic Index of Intestinal Mucosa of Early-weaned Pigs Orally Challenged with E. coli K88

  • Mazzoni, Maurizio;Merialdi, Giuseppe;Sarli, Giuseppe;Trevisi, Paolo;Bosi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.777-785
    • /
    • 2010
  • The effect of two doses of different sources of zinc, inorganic (zinc oxide) or chelated (zinc glutamate chelate), on morphology and turn-over of the small intestine was assessed in early-weaned pigs orally challenged with enterotoxigenic E. coli K88 (ETEC). Sixty pigs weaned at 21 days were assigned to one of the following 5 diets: control (C); C+Zinc oxide (ZnO), either a 200 or a 2,500 mg Zn/kg dose; or C+zinc chelate with glutamic acid (Glu-Zn), either a 200 or a 2,500 mg Zn/kg dose. On d 2, the pigs were orally inoculated with 1.5 ml of a $10^{10}$ CFU/ml E. coli K88ac O148 suspension. Zinc supplements did not improve the performance of the pigs, but on d 5 faecal excretion of ETEC was reduced, and this was mainly due to high zinc doses (p<0.05). The villous height in the duodenum was improved by the zinc supplements (p<0.01) whatever the source and the level, whereas no effect was seen in the other two tracts of small intestine. The diet did not affect apoptosis and mitosis counts, while ETEC-susceptible pigs had more mitotic cells in the villi than non-susceptible pigs, particularly in the jejunum (p<0.01). The duodenum had fewer mitotic cells in the villi (p<0.05) and in the crypts (p<0.01) and more apoptotic cells in the villi. High dietary doses of ZnO or Zn-Glutamate improve villous height of the duodenum, but not of the jejunum and the ileum, and do not affect the epithelial proliferative activity and apoptotic index of intestinal mucosa of early-weaned pigs orally challenged with ETEC.

The Presence of Neural Stem Cells and Changes in Stem Cell-Like Activity With Age in Mouse Spiral Ganglion Cells In Vivo and In Vitro

  • Moon, Byoung-San;Ammothumkandy, Aswathy;Zhang, Naibo;Peng, Lei;Ibrayeva, Albina;Bay, Maxwell;Pratap, Athira;Park, Hong Ju;Bonaguidi, Michael Anthony;Lu, Wange
    • Clinical and Experimental Otorhinolaryngology
    • /
    • v.11 no.4
    • /
    • pp.224-232
    • /
    • 2018
  • Objectives. Spiral ganglion neurons (SGNs) include potential endogenous progenitor populations for the regeneration of the peripheral auditory system. However, whether these populations are present in adult mice is largely unknown. We examined the presence and characteristics of SGN-neural stem cells (NSCs) in mice as a function of age. Methods. The expression of Nestin and Ki67 was examined in sequentially dissected cochlear modiolar tissues from mice of different ages (from postnatal day to 24 weeks) and the sphere-forming populations from the SGNs were isolated and differentiated into different cell types. Results. There were significant decreases in Nestin and Ki67 double-positive mitotic progenitor cells in vivo with increasing mouse age. The SGNs formed spheres exhibiting self-renewing activity and multipotent capacity, which were seen in NSCs and were capable of differentiating into neuron and glial cell types. The SGN spheres derived from mice at an early age (postnatal day or 2 weeks) contained more mitotic stem cells than those from mice at a late age. Conclusion. Our findings showed the presence of self-renewing and proliferative subtypes of SGN-NSCs which might serve as a promising source for the regeneration of auditory neurons even in adult mice.

Effect of MLN8237, a Novel Aurora A Kinase Inhibitor, on the Spontaneous Fragmentation of Ovulated Mouse Oocytes

  • Park, Ji-Hun;Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.499-502
    • /
    • 2011
  • Aurora A kinase is a mitotic serine/threonine kinase whose proposed functions include the maturation of centrosomes, G2/M transition, alignment of chromosomes at metaphase, and cytokinesis. In this study, we investigated the effect of MLN8237, an aurora A kinase inhibitor, on the postovulatory aging of oocytes based on the frequency of oocyte fragmentation, cdk1 kinase activity, and cyclin B degradation. The fragmentation of ovulated oocytes during prolonged culture was inhibited by treatment with MLN8237 in a concentration-dependent manner. The frequency of fragmented oocytes was significantly lower in oocytes treated with 2 ${\mu}M$ MLN8237 (13%) than in control oocytes (64%) after two days of culture. Most of the control (non-fragmented) oocytes (91%) were activated after two days of culture. In comparison, only 22% of the MLN8237-treated oocytes were activated; the rest of the oocytes (78%) were still in metaphase with an abnormal spindle and dispersed chromosomes. Next, cdk1 activity and the level of cyclin B were examined. The level of cyclin B and cdk1 activity in MLN8237-treated oocytes were nearly equal to those in control oocytes. Our results indicate that MLN8237 inhibited the fragmentation of ovulated oocytes during prolonged culture, although it blocked the spontaneous decrease in activity of cdk1 and degradation of cyclin B. This mechanism of inhibition is different from that in oocytes treated with nocodazole, which have high levels of cdk1 activity and cyclin B.

Effect of the Paclitaxel and Radiation in the Mucosa of the Small Bowel of Rat (흰쥐의 소장점막에 Paclitaxel(Taxol)과 방사선조사의 효과)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.255-264
    • /
    • 1996
  • Purpose : Paclitaxel is a chemotherapeutic agent with potent microtubule stabilizing activity that arrests cell cycle in $G_2$-M Because $G_2$-M is the most radiosensitive Phase of the cell cycle, paclitaxel has potential as a cell cycle- specific radiosensitizer. This study was designed to investigate the ability of paclitaxel to increase the radiotoxicity in normal small bowel mucosa of the rat. materials and Methods : A sigle intraperitoneal infusion of paclitaxel (10mg/kg), and a single irradiation(8 Gy, x-ray) to the whole abdomen and combination of radiation(8 Gr, x-ray) 24 hours after paclitaxel infusion in the rats were done. The changes of jejunal mucosa, and kinetics of mitotic arrest and apoptosis in the jejunal crypt were defined at 6 hours - 5 days after each treatment histologically. Results : Paclitaxel blocked jejunal crypt cell in mitosis and induced minmal apoptosis. Mitotic arrest by paclitaxel was peaked at 6 hours after infusion and returned to normal by 24 hours. Radiation induced apoptosis and peaked at 6 hours and returned to normal by 24 hours. Combination of paclitaxel and radiation blocked crypt cell in mitosis at 3 days and induced apoptosis slightly at 6 hours and 24 hours and returned to normal by 3 days. The incidence of apoptosis in combined group at 6 hours was slightly higher than normal control but significantly lower than radiation alone group. The major changes of jejunal mucosa were nuclear vesicle and atypia which were appeared at 6 hours - 3 days and returned to normal by 5 days The degree of the mucosal changes are not different in 3 groups except for absence of inflmmatory reaction in radiation group. Conclusion : Mitotic arrest by paclitaxel was peaked at 6 hours and returned to normal by 24 hours and paclitaxel induced minimal apoptosis. Radiation induced apoptosis, peaked at 6 hours and returned to normal by 24 hours. Radiation-induced apoptosis was less in combined group which suggested that paclitaxel have a radioprotective effect when radiation was given 24 hours after paclitaxel infusion.

  • PDF

Anticancer Drugs at Low Concentrations Upregulate the Activity of Natural Killer Cell

  • Hyeokjin Kwon;Myeongguk Jeong;Yeeun Kim;Go-Eun Choi
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.178-183
    • /
    • 2023
  • Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. Regulation of the cytotoxic activity of NK cells relies on integrated interactions between inhibitory receptors and numerous activating receptors that act in tandem to eliminate tumor cells efficiently. Conventional chemotherapy is designed to produce an anti-proliferative or cytotoxic effect on early tumor cell division. Therapies designed to kill cancer cells and simultaneously maintain host anti-tumor immunity are attractive strategies for controlling tumor growth. Depending on the drug and dose used, several chemotherapeutic agents cause DNA damage and cancer cell death through apoptosis, immunogenic cell death, or other forms of non-killing (i.e., mitotic catastrophe, senescence, autophagy). Among stress-induced immunostimulatory proteins, changes in the expression levels of NK cell activating and inhibitory ligands and tumor cell death receptors play an important role in the detection and elimination by innate immune effectors including NK cells. Therefore, we will address how these cytotoxic lymphocytes sense and respond to high and low concentrations of drug-induced stress to the drug cisplatin, among the various types of drugs that contribute to their anticancer activity.

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae

  • Kong, Yoon-Ju;Joo, Jeong-Hwan;Kim, Keun Pil;Hong, Soogil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.405-411
    • /
    • 2017
  • Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.