• 제목/요약/키워드: mitochondrial functions

검색결과 111건 처리시간 0.025초

Expression pattern of selenoprotein genes during embryogenesis

  • No, Kyong-Ok;Nam, Sang-Yoon;Kwon, Young-Bang;Kang, Jong-Koo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.162-162
    • /
    • 2001
  • Selenium is an essential micronutrient for mammals and its biological functions are mediated by a selenoprotein. The mitochondrial capsule selenoprotein (MCS) is a selenoprotein that is necessary for the maintenance and stabilization of the sperm mitochondrial membrane.(omitted)

  • PDF

Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats

  • Koo, Jung-Hoon;Kang, Eun-Bum
    • 운동영양학회지
    • /
    • 제23권1호
    • /
    • pp.28-35
    • /
    • 2019
  • [Purpose] The purpose of this study was to investigate the effects of treadmill exercise on oxidative stress in the hippocampal tissue and mitochondrial dynamic-related proteins in rats fed a long-term high-fat diet (HFD). [Methods] Obesity was induced in experimental animals using high fat feed, and the experimental groups were divided into a normal diet-control (ND-CON; n=12), a high fat diet-control (HFD-CON; n=12) and a high fat diet-treadmill exercise (HFD-TE; n=12) group. The rats were subsequently subjected to treadmill exercise (progressively increasing load intensity) for 8 weeks (5 min at 8 m/min, then 5 min at 11 m/min, and finally 20 min at 14 m/min). We assessed weight, triglyceride (TG) concentration, total cholesterol (TC), area under the curve, homeostatic model assessment of insulin resistance, and AVF/body weight. Western blotting was used to examine expression of proteins related to oxidative stress and mitochondrial dynamics, and immunohistochemistry was performed to examine the immunoreactivity of gp91phox. [Results] Treadmill exercise effectively improved the oxidative stress in the hippocampal tissue, expression of mitochondrial dynamic-related proteins, and activation of NADPH oxidase (gp91phox) and induced weight, blood profile, and abdominal fat loss. [Conclusion] Twenty weeks of high fat diet induced obesity, which was shown to inhibit normal mitochondria fusion and fission functions in hippocampal tissues. However, treadmill exercise was shown to have positive effects on these pathophysiological phenomena. Therefore, treadmill exercise should be considered during prevention and treatment of obesity-induced metabolic diseases.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Anion Transport or Nucleotide Binding by Ucp2 Is Indispensable for Ucp2-Mediated Efferocytosis

  • Lee, Suho;Moon, Hyunji;Kim, Gayoung;Cho, Jeong Hoon;Lee, Dae-Hee;Ye, Michael B.;Park, Daeho
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.657-662
    • /
    • 2015
  • Rapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells. However, the functions of Ucp2, beyond its possible role in dissipating the mitochondrial membrane potential, that contribute to elevation of the phagocytic capacity have not been determined. Here, we report that the anion transfer or nucleotide binding activity of Ucp2, as well as its dissipation of the mitochondrial membrane potential, is necessary for Ucp2-mediated engulfment of apoptotic cells. To study these properties, we generated Ucp2 mutations that affected three different functions of Ucp2, namely, dissipation of the mitochondrial membrane potential, transfer of anions, and binding of purine nucleotides. Mutations of Ucp2 that affected the proton leak did not enhance the engulfment of apoptotic cells. Although anion transfer and nucleotide binding mutations did not affect the mitochondrial membrane potential, they exerted a dominant-negative effect on Ucp2-mediated engulfment. Furthermore, none of our Ucp2 mutations increased the phagocytic capacity. We conclude that dissipation of the proton gradient by Ucp2 is not the only determinant of the phagocytic capacity and that anion transfer or nucleotide binding by Ucp2 is also essential for Ucp2-mediated engulfment of apoptotic cells.

Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing

  • Muisuk, Kanha;Silsirivanit, Atit;Imtawil, Kanokwan;Bunthot, Suphawadee;Pukhem, Ake;Pairojkul, Chawalit;Wongkham, Sopit;Wongkham, Chaisiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1737-1742
    • /
    • 2015
  • Background: Mitochondrial DNA (mtDNA) mutations have been shown to be associated with cancer. This study explored whether mtDNA mutations enhance cholangiocarcinoma (CCA) development in individuals. Materials and Methods: The whole mitochondrial genome sequences of 25 CCA patient tissues were determined and compared to those of white blood cells from the corresponding individuals and 12 healthy controls. The mitochondrial genome was amplified using primers from Mitoseq and compared with the Cambridge Reference Sequence. Results: A total of 161 mutations were identified in CCA tissues and the corresponding white blood cells, indicating germline origins. Sixty-five (40%) were new. Nine mutations, representing those most frequently observed in CCA were tested on the larger cohort of 60 CCA patients and 55 controls. Similar occurrence frequencies were observed in both groups. Conclusions: While the correspondence between the cancer and mitochondrial genome mutation was low, it is of interest to explore the functions of the missense mutations in a larger cohort, given the possibility of targeting mitochondria for cancer markers and therapy in the future.

Roles of mitochondria in neuronal development

  • Son, Geurim;Han, Jinju
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.549-556
    • /
    • 2018
  • Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria-regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed.

난소절제와 Genistein 투여가 간 미토콘드리아 기능에 미치는 영향 (Effect of Ovariectomy and Genistein on Hepatic Mitochondrial Function)

  • 이영민;정명호;이연숙;송지현
    • Journal of Nutrition and Health
    • /
    • 제37권9호
    • /
    • pp.786-793
    • /
    • 2004
  • Women with menopause or rats with ovariectomy is associated with increased body weight, body fat and insulin resistance, which are components of metabolic syndrome. Increased prevalence of metabolic syndrome after menopause might be associated with mitochondrial dysfunction, since mitochondrial oxidative and phosphorylation activity is strongly correlated with insulin sensitivity. Although estradiol replacement prevents the metabolic syndrome, harmful effect of estradiol hampers the casual usage to prevent the metabolic syndrome. It has been reported that genistein has a mild estrogenic activity, decreases fat mass in mice and has an antidiabetic role in diabetic rats. Although insulin resistance is closely related to mitochondrial functions, there has not been yet any study in regard to the effect of dietary genistein on mitochondrial function in the insulin resistant female subjects induced by ovariectomy or similar situation. The present study investigated whether the supplementation of genistein in the high fat diet affected the mitochondrial function of high fat fed ovariectomized rats. Female Sprague Dawley rats (8 weeks old) were assigned to the following groups: sham-operated+ high fat diet (S, n=6); sham-operated + high fat diet with 0.1% genistein (S + G, n=7); ovariectomized + high fat diet (OVX, n=8); ovariectomized + high fat diet with 0.1% genistein (OVX+ G, n=8). Ovariectomy significantly increased body weight compared with S group. Genistein consumption in ovariectomized (OVX + G) rats decreased body weight gain compared with OVX rats. Liver weights were increased by ovariectomy. The hepatic mitochondrial protein density expressed as mg per g liver was lower in the OVX group than in the S group. However, OVX + G group showed the increased mitochondrial protein density similar to the level of S group. When mRNA levels of genes related to mitochondria such as peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1 (PGC-1) and cytochrome c oxidase subunit III (COX III) were measured, there were decreases in the mRNA levels of PGC-1 and COX III in S + G, OVX and OVX + G group. The activity of cytochrome c oxidase was not different between groups. We could observe the decrease in succinate dehydrogenase (SDH) activity per g liver in OVX rats. Genistein supplement increased SDH activity. In conclusion, genistein supplementation to the OVX rats enhanced mitochondrial function by increasing mitochondrial protein density and SDH activity. The improvement in mitochondrial function by genistein can contribute to the improvement in metabolic syndrome.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.