• Title/Summary/Keyword: mitochondrial cytochrome c

Search Result 447, Processing Time 0.032 seconds

Silibinin Induces Apoptotic Cell Death Via ROS-dependent Mitochondrial Pathway in Human Glioma Cells

  • Shin, Won-Yong;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.888-894
    • /
    • 2009
  • It has been reported that silibinin, a natural polyphenolic flavonoid, induces cell death in various cancer cell types. However, the underlying mechanisms by which silibinin induces apoptosis in human glioma cells are poorly understood. The present study was therefore undertaken to examine the effect of silibinin on glioma cell apoptosis and to determine its underlying mechanism in human glioma cells. Apoptosis was estimated by FACS analysis. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (${\Psi}m$) were measured using fluorescence dyes DCFH-DA and $DiOC_6$(3), respectively. Cytochrome c release from mitochondria and caspase-3 activation were estimated by Western blot analysis using specific antibodies. Exposure of cells to 30 mM silibinin induced apoptosis starting at 6 h, with increasing effects after 12-48h in a time-dependent manner. Silibinin caused ROS generation and disruption of ym, which were associated with the silibinin-induced apoptosis. The silibinin-induced ROS generation and disruption in ym were prevented by inhibitors of mitochondrial electron transport chain. The hydrogen peroxide scavenger catalase blocked ROS generation and apoptosis induced by silibinin. Silibinin induced cytochrome c release into cytosolic fraction and its effect was prevented by catalase and cyclosporine A. Silibinin treatment caused caspase-3 activation, which was inhibited by DVED-CHO and cyclosporine A. Pretreatment of caspase inhibitors also protected against the silibinin-induced apoptosis. These findings indicate that ROS generation plays a critical role in the initiation of the silibinin-induced apoptotic cascade by mediation of the mitochondrial apoptotic pathway including the disruption of ${\Psi}m$, cytochrome c release, and caspase-3 activation.

Modulation of the Cytochrome c Oxidase Activity by ATP: Implications for Mitochondrial Respiratory Control

  • Park, Nan-Hyang;Chun, Sun-Bum;Han, Tae-Young;Han, Sang-Hwa
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.300-307
    • /
    • 1996
  • ATP and ADP are potential regulators of mitochondtial respiration and at physiological concentrations they affect the rate of electron transfer between cytochrome c and cytochrome c oxidase. The electron transfer, however, depends on the electrostatic interaction between the two proteins. In order to exclude any nonspecific ionic effects by these polyvalent nucleotides, we used 2'-O-(2,4,6)trinitro(TNP)-derivatives of ATP and ADP which have three orders of magnitude higher affinity for cytochrome c oxidase. A simple titration of the fluorescence intensity of TNP by cytochrome c oxidase showed a binding stoichiometry of 2:1 cytochrome c:cytochrome c oxidase. Higher ionic strength was required for TNP-ATP than for TNP-ADP to be dissociated from cytochrome c oxidase, indicating that the negative charges on the phosphate group are at least partially responsible for the binding. In both spectrophotometric and polarographic assays, addition of ATP (and ADP to a less extent) showed an enhanced cytochrome c oxidase activity. Both electron paramagnetic resonance and fluorescence spectra indicate that there is no Significant change in the cytochrome c-cytochrome c oxidase interaction. Instead, reduction levels of the cytochromes at steadystate suggest that the increased activity of nucleotide-bound cytochrome c oxidase is due to faster electron transfer from cytochrome ${\alpha}$ to cytochrome ${\alpha}_3$, which is known to be the fate limiting step in the oxygen reduction by cytochrome c oxidase.

  • PDF

KR-33028, a Novel Na+/H+ Exchanger-1 Inhibitor, Attenuates Glutamate-Induced Apoptotic Cell Death through Maintaining Mitochondrial Function

  • Lee, Bo-Kyung;Lee, Sun-Kyung;Yi, Kyu-Yang;Yoo, Sung-Eun;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.445-450
    • /
    • 2011
  • Preciously, we demonstrated that a novel NHE-1 inhibitor, KR-33028 attenuated cortical neuronal apoptosis induced by glutamate. In the present study, we investigated the signaling mechanism of neuroprotective effect of KR-33028 against glutamate-induced neuronal apoptosis, especially focusing on mitochondrial death pathway. Our data showed that glutamate induces a biphasic rise in mitochondrial $Ca^{2+}$ and that KR-33028 significantly prevents the second phase increase, but not the first phase increase in mitochondrial $Ca^{2+}$. Furthermore, KR-33028 restored the ${\Delta}{\Psi}_m$ dissipation and cytochrome c release into cytoplasm induced by glutamate in a concentration-dependent manner. The inhibition of mitochondrial $Ca^{2+}$ overload by ruthenium red also inhibited glutamate-induced apoptotic cell death, mitochondrial membrane potential, ${\Delta}{\Psi}_m$ dissipation and cytochrome c release. These data suggest that inhibition of mitochondrial $Ca^{2+}$ overload is likely to be attributable to anti-apoptotic effect of KR-33028. Taken together, our results suggest that anti-apoptotic effects of NHE-1 inhibitor, KR-33028 may be mediated through maintenance of mitochondrial function.

Cytotoxic Activity from Curcuma zedoaria Through Mitochondrial Activation on Ovarian Cancer Cells

  • Shin, Yujin;Lee, Yongkyu
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.257-261
    • /
    • 2013
  • ${\alpha}$-Curcumene is one of the physiologically active components of Curcuma zedoaria, which is believed to perform anti-tumor activities, the mechanisms of which are poorly understood. In the present study, we investigated the mechanism of the apoptotic effect of ${\alpha}$-curcumene on the growth of human overian cancer, SiHa cells. Upon treatment with ${\alpha}$-curcumene, cell viability of SiHa cells was inhibited > 73% for 48 h incubation. ${\alpha}$-Curcumene treatment showed a characteristic nucleosomal DNA fragmentation pattern and the percentage of sub-diploid cells was increased in a concentration-dependent manner, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of ${\alpha}$-curcumene, which mediates cell death. These results suggest that the apoptotic effect of ${\alpha}$-curcumene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c.

Molecular phylogeny of parasitic Platyhelminthes based on sequences of partial 28S rDNA D1 and mitochondrial cytochrome c oxidase subunit I

  • Lee, Soo-Ung;Chun, Ha-Chung;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • The phylogenie relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenie relationships. The phylogenie patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.

Phylogenetic Analysis of Reticulitermes speratus using the Mitochondrial Cytochrome C Oxidase Subunit I Gene

  • Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.135-139
    • /
    • 2010
  • Reticulitermes speratus is commonly found in Asia, including Korea and Japan. We recently analyzed the 5' region of mitochondrial cytochrome c oxidase subunit I to perform a phylogenetic analysis of R. speratus KMT1, isolated in Seoul, Korea. Our results, using COXI, suggest that the taxonomy of R. speratus should be reconsidered with regard to the subgenus group. A similar phylogenetic analysis by COXI and COXII demonstrated the reliability of COXI genetic information in a molecular phylogenetic analysis of termites.

Stock Characterization of the Fleshy Prawn (Penaeus chinensis) in the Yellow Sea by Intraspecific Sequence Variation of the Cytochrome c Oxidase Subunit I Gene

  • HWANG Gyu-Lin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.876-881
    • /
    • 1996
  • To determine the amount of genetic variation among populations of Penaeus chinensis (Osbeck) in the Yellow Sea, 342 bp region of the mitochondrial cytochrome c oxidase subunit I gene was amplified and sequenced. Six haplotypes, which differ by from one to four nucleotide sustitutions, were detected from 34 individuals of 4 populations examined. Mean sequence divergence between pairs of haplotypes was $0.68\%$. Most individuals from 4 populations were shared by the most common genotype. This genotype was distributed evenly in the Korean and Chinese populations. This result is in accordance with findings observed using RFLPs analysis of mtDNA (Hwang et al., 1997). Therefore, it is suggested that P. chinensis should be treated as one unit stock in the Yellow Sea.

  • PDF

Induction of apoptosis in human promyelocytic leukaemia HL -60 cells by yomogin involves release of cytochrome c and activation of caspase

  • Jeong, Seoung-Hee;Koo, Sung-Ja;Ryu, Shi-Yong;Park, Hee-Jun;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.319.1-319.1
    • /
    • 2002
  • Yomogin. an eudesmane sesquiterpene isolated from Artemisia princeps, was found to induce apoptosis in human promyelocytic leukaemia, HL -60 cell with characteristic apoptotic features like nuclear condensation, apoptotic body formation, flipping of membrane phosphatidylserine, release of mitochondrial cytochrome c and caspase-8. -9. and -3 activation. Furthermore. early yomogin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAd fmk and preceded loss of mitochondrial membrane potential. The results suggest that induction of apoptosis by yomogin may provide a pivotal mechanism for their cancer chemopreventive function.

  • PDF

Cytochrome c and Chloroplast were Used for an Artificial Approach to Confirming the Irreversible Catalysis by Mitochondrial Cytochrome Oxidase

  • Song, Ji-Young;Lee, Jae-Yang;Lee, Sang-Jik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.285-288
    • /
    • 2000
  • Ferricytochrome c was artificially made to receive the aqueous electrons evolved through the influence of illuminated chloroplast. This ferricytochrome c, which was bombarded by electrons, was reduced to ferrocytochrome c by making sure that a certain cytochrome is reduced. This may require an electronic attack that is created by the chloroplast inside the plant cell. The possibility of reversing the oxidation of ferrocytochrome c by cytochrome oxidase was examined using a contrived redox system composed of cytochrome oxidase, ferricytochrome c and chloroplast with illumination. We recognized that the oxidase is unserviceable for the reversibleness in spite of the existence of chloroplast.

  • PDF

Cytochrome c Peroxidase: A Model Heme Protein

  • Erman, James E.;Vitello, Lidia B.
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.307-327
    • /
    • 1998
  • Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme which catalyzes the reduction of hydrogen peroxide to water using two equivalents of ferrocytochrome c. The CcP/cytochrome c system has many features which make it a very useful model for detailed investigation of heme protein structure/function relationships including activation of hydrogen peroxide, protein-protein interactions, and long-range electron transfer. Both CcP and cytochrome c are single heme, single subunit proteins of modest size. High-resolution crystallographic structures of both proteins, of one-to-one complexes of the two proteins, and a number of active-site mutants are available. Site-directed mutagenesis studies indicate that the distal histidine in CcP is primarily responsible for rapid utilization of hydrogen peroxide implying significantly different properties of the distal histidine in the peroxidases compared to the globins. CcP and cytochrome c bind to form a dynamic one-to-one complex. The binding is largely electrostatic in nature with a small, unfavorable enthalpy of binding and a large positive entropy change upon complex formation. The cytochrome c-binding site on CcP has been mapped in solution by measuring the binding affinities between cytochrome c and a number of CcP surface mutations. The binding site for cytochrome c in solution is consistent with the crystallographic structure of the one-to-one complex. Evidence for the involvement of a second, low-affinity cytochrome c-binding site on CcP in long-range electron transfer between the two proteins is reviewed.

  • PDF