Modulation of the Cytochrome c Oxidase Activity by ATP: Implications for Mitochondrial Respiratory Control

  • Park, Nan-Hyang (Department of Biochemistry, Kangwon National University) ;
  • Chun, Sun-Bum (Department of Biochemistry, Kangwon National University) ;
  • Han, Tae-Young (Department of Biochemistry, Kangwon National University) ;
  • Han, Sang-Hwa (Department of Biochemistry, Kangwon National University)
  • Received : 1996.02.14
  • Published : 1996.07.31

Abstract

ATP and ADP are potential regulators of mitochondtial respiration and at physiological concentrations they affect the rate of electron transfer between cytochrome c and cytochrome c oxidase. The electron transfer, however, depends on the electrostatic interaction between the two proteins. In order to exclude any nonspecific ionic effects by these polyvalent nucleotides, we used 2'-O-(2,4,6)trinitro(TNP)-derivatives of ATP and ADP which have three orders of magnitude higher affinity for cytochrome c oxidase. A simple titration of the fluorescence intensity of TNP by cytochrome c oxidase showed a binding stoichiometry of 2:1 cytochrome c:cytochrome c oxidase. Higher ionic strength was required for TNP-ATP than for TNP-ADP to be dissociated from cytochrome c oxidase, indicating that the negative charges on the phosphate group are at least partially responsible for the binding. In both spectrophotometric and polarographic assays, addition of ATP (and ADP to a less extent) showed an enhanced cytochrome c oxidase activity. Both electron paramagnetic resonance and fluorescence spectra indicate that there is no Significant change in the cytochrome c-cytochrome c oxidase interaction. Instead, reduction levels of the cytochromes at steadystate suggest that the increased activity of nucleotide-bound cytochrome c oxidase is due to faster electron transfer from cytochrome ${\alpha}$ to cytochrome ${\alpha}_3$, which is known to be the fate limiting step in the oxygen reduction by cytochrome c oxidase.

Keywords

References

  1. Biochem. J. v.256 Antonini, G.;Malatesta, F.;Sarti, P.;Vallone, B.;Brunori, M. https://doi.org/10.1042/bj2560835
  2. Nature v.356 Babcock, G.T.;Wikstrom, M. https://doi.org/10.1038/356301a0
  3. J. Biol. Chem. v.262 Bisson, R.;Schiavo, G.;Montecucco, C.
  4. Eur. J. Biochem. v.122 Casey, R.P.;Ariano, B.H.;Azzi, A. https://doi.org/10.1111/j.1432-1033.1982.tb05882.x
  5. Biochim. Biophys. Acta. v.1017 Cooper, C.E. https://doi.org/10.1016/0005-2728(90)90184-6
  6. Biochemistry v.34 Craig, D.B.;Wallace, C.J.A. https://doi.org/10.1021/bi00008a036
  7. Biochem. J. v.279 Craig. D.B.;Wallace, C.J.A. https://doi.org/10.1042/bj2790781
  8. Biochem. Cell Biol. v.70 Crinson, Nicholls https://doi.org/10.1139/o92-047
  9. J. Biol. Chem. v.251 Ferguson-Miller, S.;Brautigan, D.L.;Margoliash, E.
  10. Biochemistry v.28 Gregory, L.;Ferguson-Miller, S. https://doi.org/10.1021/bi00432a044
  11. J. Biol. Chem. v.263 Hall, J.;Moubarak, A.;O'Brien, P.;Pan, L.P.;Cho, I.;Millett, F.
  12. Nature v.348 Han, S.;Ching, Y.C.;Rousseau, D.L. https://doi.org/10.1038/348089a0
  13. FEBS Lett. v.207 Huther, F.J.;Kadenbach, B. https://doi.org/10.1016/0014-5793(86)80018-7
  14. Biochem. Biophys. Res. Comm. v.147 Huther, F.J.;Kadenbach, B. https://doi.org/10.1016/S0006-291X(87)80207-3
  15. Nature v.376 Iwata, S.;Ostermeier, C.;Ludwig, B.;Michel, H. https://doi.org/10.1038/376660a0
  16. Biochem. J. v.262 Kossekova, G.;Atanasov, B.;Bolli, R.;Azzi, A. https://doi.org/10.1042/bj2620591
  17. Biochemistry v.34 Lin, J.;Wu, S.;Lau, W.;Chan, S.I. https://doi.org/10.1021/bi00008a035
  18. Biochem. J. v.248 Malatesta, F.;Antonini, G.;Sarti, P.;Brunori, M. https://doi.org/10.1042/bj2480161
  19. Nature v.208 Mitchell, P.;Moyle, J. https://doi.org/10.1038/208147a0
  20. Biochem. J. v.234 Montecucco, C.;Schiavo, G.;Bisson, R. https://doi.org/10.1042/bj2340241
  21. J. Bioenerg. Biomembr. v.25 Nicholls, P.;Butko, P. https://doi.org/10.1007/BF00762855
  22. Biochemistry v.34 Ortega-Lopez, J.;Robinson, N.C. https://doi.org/10.1021/bi00031a023
  23. Biochem. J. v.254 Reimann, A.;Huther, F.J.;Berden, J.A.;Kadenbach, B. https://doi.org/10.1042/bj2540723
  24. Biochemistry v.33 Taanman, J.W.;Turina, P.;Capaldi, R.A. https://doi.org/10.1021/bi00205a020
  25. Science v.269 Tsukihara, T.;Aoyama, H.;Yamashita, E.;Tomizaki, T.;Yamaguchi, H.;Shinzawa-Itoh, Y.;Nakashima, R.;Yaono, R.;Yoshikawa, S. https://doi.org/10.1126/science.7652554
  26. J. Biol. Chem. v.236 Yonetani, T.