• Title/Summary/Keyword: mission operation

Search Result 552, Processing Time 0.027 seconds

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

Development of the KOBAS2 for monitoring the health status of KOMPSAT-2

  • Koo, In-Hoi;Lee, Myeong-Shin;Ahn, Sang-Il;Kim, En-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.824-826
    • /
    • 2006
  • The number of satellite under operation is being on the increase, however, because the number of operator is limited the reliable control system is necessary for stable mission operation. Especially it is necessary that error event indication such as colour or sound should be displayed with high reliability for intuitional monitoring. The limit range of KOBAS2 provides realistic value that is defined with in-orbit value and related document. It makes it possible for operator to monitor a number of telemetry data easily through single screen system instead of monitoring each mnemonics. The development and operation experience of KOBAS2 will contribute to the development of the evolved automatic telemetry monitoring system for future mission.

  • PDF

Development and Testing of Satellite Operation System for Korea Multipurpose Satellite-I

  • Mo, Hee-Sook;Lee, Ho-Jin;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The Satellite Operation System (SOS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I, to monitor and control the spacecraft as well as to perform the mission operation. SOS was designed to operate on UNIX in the HP workstations. In the design of SOS, flexibility, reliability, expandability and interoperability were the main objectives. In order to achieve these objectives, a CASE tool, a database management system, consultative committee for space data systems recommendation, and a real-time distributed processing middle-ware have been integrated into the system. A database driven structure was adopted as the baseline architecture for a generic machine-independent, mission specific database. Also a logical address based inter-process communication scheme was introduced for a distributed allocation of the network resources. Specifically, a hotstandby redundancy scheme was highlighted in the design seeking for higher system reliability and uninterrupted service required in a real-time fashion during the satellite passes. Through various tests, SOS had been verified its functional, performance, and inter-face requirements. Design, implementation, and testing of the SOS for KOMPSAT-I is presented in this paper.

  • PDF

Quick Evaluation of Spacecraft Orbit Maneuver Using Small Sets of Real-time GPS Navigation Solutions

  • Lee, Byoung-Sun;Lee, Ho-Jin;Lee, Seong-Pal;Kim, Jong-Ah;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.458-458
    • /
    • 2000
  • Quick evaluations of two in-plane orbit maneuvers using small see of real-time CPS navigation solutions were peformed lot the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large see of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.

  • PDF

Local Path Planning Manager for Autonomous Navigation of UGV (무인차량의 자율주행을 위한 지역경로계획 매니저)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.990-997
    • /
    • 2010
  • The Mission environment of UGV(Unmanned Ground Vehicle) has a complexity and variety, and the status of system and sensor is dependent on the environment factors such as operation time, the weather and road type. It is necessary for UGV to cope adaptively with the various mission types, operation modes and operation environment as human operators do. To satisfy this necessity, we present an autonomy manager based on the autonomous architecture. In this paper, we design a path planning software architecture and LPP manager by using open autonomous architecture which is previously designed by ADD. Field test is conducted with UGV in order to verify the performance of LPP Manager based on the Autonomous Architecture with scenarios.

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

The Study of Training Scenario for the KA-32T Helicopter Simulator (KA-32T 헬리콥터 시뮬레이터를 위한 훈련 시나리오 연구)

  • Jeong, Ji-Hoon;Kang, Seung-On;Lee, Ki-Hak;Park, Yong-Jin;Ko, Kang-Myung;Ham, Dae-Young;Lee, Dong-Ho;Jun, Hyang-Sig;Choi, Hyung-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.28-35
    • /
    • 2008
  • The purpose of this study is to develop a training scenario for KA-32T helicopter simulator. First, the concept of training scenario are classified into training elements and training information. Secondly, the training elements are defined according to the property of each element: flight phase, situation, and environment. The main mission of KA-32T on the operation of KFS(Korea Forest Service) is the forest fire extinguishment mission, and it is divided into the two disciplines: water supply and water discharge. Finally the mission scenario for two disciplines are defined and developed as the combination of the normal procedures of training scenario and the mission procedures.

  • PDF

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

Aircraft Combat Survivability Analysis Model for the Air-to-Ground Mission (공대지 임무를 위한 항공기 전투생존성 분석모형)

  • 김인동;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-16
    • /
    • 1998
  • Aircraft combat survivability(ACS) can be defined here as the probability of an aircraft to accomplish a given mission and not to be killed by enemy threats. The purpose of this thesis is to obtain analytically the combat survivability of the military aircraft according to the enemy and operation environment. Five factors under which a mission is being carried out are considered in this study. These factors are types and performance of enemy threats, aircraft susceptibility, aircraft vulnerability, ECM(electronic counter measures) capability, and pilot's capability. The model constructed in this study would be a useful tool to analyze ACS based on analytical method. It is also able to provide a better input data for wargaming simulation and present a criterion on determining optimal sorties for aircraft's air-to-ground mission.

  • PDF

The Design of MSC(Multi-Spectral Camera) System Operation

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Paik, Hong-Yul;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.825-827
    • /
    • 2003
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/storage. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the architecture and function of MSC hardware including electrical interface and the operation concept which have been established based on the mission requirements are described. And the design and the preparation of MSC system operation are analyzed and discussed.

  • PDF