• Title/Summary/Keyword: mission control system

Search Result 398, Processing Time 0.026 seconds

Pixhawk mission mode flight control-law structure analysis based on Open-Source (오픈소스 기반 Pixhawk 미션모드 비행제어법칙 구조 분석)

  • Lee, Yeongho;Shin, Seungchan;Mok, Jihyun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • This paper deals with the analysis of the inner-loop algorithm of the Pixhawk which is a representative multi-copter open source. The algorithm is based on flight control-law structure. The inner-loop algorithm of the Pixhawk can be divided into a position controller and an attitude controller. The position controller generates the attitude of the multi-copter to move to the destination The position controller also generates the demand force and moment acting on each actuator. We confirm that the position controller saturates the desired acceleration and speed by using a proper relational expression. The expression can be used in order to prevent the sudden change in the attitude of a multi-copter.

Generation of System Requirements for Smart UAV (스마트 무인기 시스템 요건 도출)

  • Lee, Jung Jin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • This paper presents the brief generation process of system requirements for Smart UAV from a development objective. The current Smat UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle because of the new technology demonstration research program funded by governments. The Smart UAV system consists of flight vehicle, avionics, communication link, payload, ground control station and ground supporting system. In this paper, top-down flown requirements are introduced how to allocate to each sub-system.

  • PDF

Embedded Software Development for MSC on KOMPSAT-2

  • Heo, H.P.;Kong, J.P.;Yong, S.S.;Kim, Y.S.;Park, J.E.;Youn, H.S.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1093-1095
    • /
    • 2003
  • MSC(Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. MSC system includes main control unit, called SBC(Single Board Computer). SBC controls all the sub-units of MSC system and communicates with spacecraft bus. The software developed for SBC should be reliable and autonomous to support various kinds of imaging missions. It is being developed using VxWorks real-time operating system to manage all tasks for all units efficiently. In this paper, the characteristics of the embedded software on the MSC system will be presented. It covers the hardware related characteristics like the BSP(Board Support Package), device driver and code patch mechanism.

  • PDF

Disturbance observer based anti-disturbance fault tolerant control for flexible satellites

  • Yadegari, Hamed;Khouane, Boulanouar;Yukai, Zhu;Chao, Han
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.459-475
    • /
    • 2018
  • In the field of aerospace engineering, accurate control of a spacecraft's orientation is often very important to mission success. Therefore, attitude control is a technically plentiful and extensively studied subject in controls literature during recent decades. This investigation of spacecraft attitude control is assumed to address two important aspects of the problem solutions. One sliding mode anti-disturbance control for utilization of faulty actuator components and another one disturbance observer based control to improve the pointing accuracy in the absence of anti-vibration equipment for the elastic appendages like a solar panel. Simultaneous occurrence of vibration due to flexible appendages and reaction degradation due to failure in attitude actuators complicates this case. The advantage of this method is acquisition proper control by the combination of disturbance observer and sliding mode compensation that form a fault tolerant control for the concerned satellite attitude control system. Furthermore, the proposed composite method indicates that occurrence the failure in actuators and even elastic solar panel vibration effect may be handled directly without reconfiguring the control components or providing piezoelectric devices. It's noteworthy, attitude quaternion and angular velocity commands are robustly tracked via controllers to become inclined to zero.

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

Contamination Control of Optical Observation Satellite

  • Lee, Chang-Ho;Lee, Choon-Woo;Cho, Young-Jun;Whang, Do-Soon
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.28.3-28.3
    • /
    • 2008
  • Contamination has the potential for degrading the performance of the optical payload beyond the limits defined by mission requirements, therefore it must be considered a risk to system performance and must be mitigated. To mitigate contamination problem, contamination budget is allocated according to the contamination requirements which is derived from contamination effect analysis. Once the contamination budget is allocated, prediction for on-ground and in-orbit contaminants amounts and cleanliness control is performed. In this article, typical contamination control for observation satellite is described.

  • PDF

Drone Hand Gesture Control System for DJI Mavic Air (DJI 매빅에이어를 위한 드론 손 제스처 제어 시스템)

  • Hamzah, Mohd Haziq bin;Jung, Jinwoong;Lee, Joohyun;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.333-334
    • /
    • 2018
  • This is a study on controlling a drone (DJI Mavic Air) with simple hand gesture using Leap Motion controller. Four component involve are MacBook, Leap Motion controller, Android device, and DJI Mavic Air. All of this component are connected through USB, Bluetooth, and Wi-Fi technology. The studies main purpose are to show that by controlling a drone through Leap Motion, drone amateur user can easily learn how to control a drone, and because of longer drone control range can be archived things such as search and rescue mission will be possible.

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

Plug-and-Play Framework for Connectivity Control and Self-Reconfiguration of Weapon System Components (무기체계 구성장치의 연결성 제어 및 자율 재구성을 위한 플러그앤플레이 프레임워크)

  • Chang, HyeMin;Kang, SukJong;Cho, YoungGeol;Yoon, JooHong;Yun, Jihyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.328-338
    • /
    • 2021
  • A study on common modular design based on open standards to reduce the life cycle cost of ground weapon system is underway. Since the ground weapon system includes major mission equipment such as fire control system, it is essential to apply the concept of fault tolerance through automatic reconfiguration and blocking unspecified equipment through connectivity control. However, it is difficult to generalize due to the difference in operating characteristics for each system. In this paper, we propose a plug-and-play framework, which includes plug-and-play architecture and mechanism. The proposed method can be used in common by the application of each component as it is divided into a common service layer. In addition, the proposed connectivity control and autonomous reconfiguration method facilitates reflection of operating characteristics for each system. We constructed a verification environment that can simulate ground weapon systems and components, and verified that the proposed framework works through scenario-based functional tests.

Factors Affecting Medical Incident Care on WBAN

  • Lim, Sungryel;Lee, Hongchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1058-1076
    • /
    • 2013
  • The WBAN(Wireless Body Area Network) supplies mobile convenience to our medical services. But if we have few effective control variables across this service deployment, the hidden distortions or defects of the system might threaten the lives and rights of the stakeholders. Therefore we need to increase the service credibility, to get WBAN effective. This study proposes a governance mechanism using feasible variables that are currently in use in practices in WBAN environments against medical incidents. Control variables were tested in Seoul National University hospital and related medical industries of South Korea. We assume that WBAN systems would be open based on integrating patients, medical employees and law enforcements to get smart theater operations against medical incidents by implementing proposed MJA(Multilateral Joint Analysis) model. MJA model also contributes to the convergence of computer systems and medical services by demonstrating flexible SOA(Service Oriented Architecture) dashboard of healthcare services with credibility factors in medicine. The important components in MJA model across WBAN, were found to be "Safety, Accuracy and Reliability" in priority order. Factor analysis, correlations and ANOVA were used to evaluate this model and an IT dashboard with a realization of mobile application, was used to support participants' decision-making.