• Title/Summary/Keyword: mission control

Search Result 614, Processing Time 0.035 seconds

JPEG Performance analysis for COMS LHGS Design (통신해양 기상위성 LHGS 설계를 위한 JPEG 성능 분석)

  • Bae Hee-Jin;Seo Seok-Bae;Ahn Sang-Il;Jung Sung-Chul;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.381-385
    • /
    • 2006
  • 2008년 발사를 목표로 개발되고 있는 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)는 기상 관측과 해양 관측 임무 및 통신 임무까지 수행하는 정지궤도 위성이다. 통신해양기상위성은 크게 탑재체와 지상국으로 나눌 수 있고 지상국은 다시 통신 임무를 위한 CTES(Communication Test Earth Station), 해양/기상 임무를 위한 IDACS(Image Acquisition and Control System), 그리고 위성 관제와 운영을 위한 SGCS(Satellite Ground Control System)로 구분된다. 이 중 IDACS의 서브시스템 중 하나인 LHGS(LRIT/HRIT Generation Subsystem)는 LRIT/HRIT(Low Rate Information Transmission/High Rate Information Transmission)를 생성하고 배포하는 기능을 가지고 있다. 관측 종료 후 LRIT/HRIT 전송 완료까지 15분 이내로 이루어져야 한다는 기상청의 요구사항을 만족하기 위해서 JPEG 압축 시간도 중요한 요소로 고려되어야 한다. 그래서 본 논문에서는 MTSAT에서 받은 LRIT/HRIT의 자료 처리를 바탕으로 lossless JPEG와 lossy JPEG의 압축 시간을 측정하여 압축률을 비교하여 성능 분석을 해보기로 한다. 이렇게 도출해낸 수치자료는 COMS LHGS 설계에 활용할 수 있다.

  • PDF

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

A Study on Flight Trajectory Generations and Guidance/Control Laws : Validation through HILS (무인항공기의 비행경로 생성 및 유도제어 알고리즘 연구 : HILS를 통한 검증)

  • Baek, Soo-Ho;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1238-1243
    • /
    • 2008
  • This paper presents an HILS(Hardware in the Loop Simulations) based experimental study for the UAV's flight trajectory planning/generation algorithms and guidance/control laws. For the various mission that is loaded on each waypoint, proper trajectory planning and generation algorithms are applied to achieve best performances. Specially, the 'smoothing path' generation and the 'tangent orbit path' guidance laws are presented for the smooth path transitions and in-circle loitering mission, respectively. For the control laws that can minimize the effects of side wind, side slip angle($\beta$) feedback to the rudder scheme is implemented. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether via HILS.

A study of Mission statements for strategic management - Focusing on the tertiary care hospitals in korea and special functioning hospitals in Japan- (한국과 일본병원의 미션선언문 비교연구 - 한국의 상급종합병원과 일본의 특정기능병원을 중심으로-)

  • Dang, Ji-Yeon;Choy, Yoon-Soo;Kim, Young-Hoon
    • Korea Journal of Hospital Management
    • /
    • v.18 no.1
    • /
    • pp.70-87
    • /
    • 2013
  • This study investigated contents of mission statements for Strategic Management of hospitals in Korea and Japan. For the study, 44 tertiary care hospitals in korea, which were accredited by the Ministry of Health and Welfare, were selected. And 83 special functioning hospitals in Japan, which were approved by the Minister of Health, Labour and Welfare, were included. Both quantitative and qualitative analyses were conducted by classifying 5 components of the mission statement; market, service, philosophy, image, contribution. Findings from this study are as follow. First, hospitals in Korea emphasized image(93.2%) and philosophy(81.8%) components in their mission statements, whereas hospitals in Japan highlighted components of service(89.2%) and market(72.3%). In detail, mission statements of Korean tertiary care hospitals describe the components of hospital's image (93.2%), philosophy(81.8%), contribution(56.8%), market(22.7%) and service (18.2%) in order. On the other hand, mission statements of Japanese special functioning hospitals describe hospital's service(89.2%), market(72.3%), contribution(61.4%), image (49.4%) and philosophy(34.9%), respectively. Second, as results of Content analysis, there were some differences in mission statements of hospitals between two countries, and it is mainly from the divergences of standards for recognition of medical institutions, environmental factors, and different ways of mission statement description. For strategic hospital management, carrying out innovative restructuring organization or promoting of research and training for medical development is considered as a desirable approach. However, clear description of mission statement is more important and it is required for effective control and managing organization. And then the mission should be communicated within an organization so all internal members understand it and put their efforts to achieve the mission of organization. In conclusion, it is recommended that a leader and senior managers should re-evaluate its mission statement whether it reflects characteristics of an organization. In addition, a mission statement should be created or improved based on critical decision, as well as it should be clearly shared within an organization in order to become a future oriented organizations.

  • PDF

Prospect and Direction on Korean Ground System Development (우리나라 지상시스템의 발전 전망 및 방향)

  • Chung, Daewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.718-727
    • /
    • 2016
  • Korean ground systems have started to be developed for mission control and payload data processing since 1990s. International technology cooperations were needed in the early development phase of ground system for science experiment satellite, LEO satellite and GEO satellite and then they have been developed as domestic own technology since acquiring early technology. Our country has developed total 14 ground systems until now, this paper suggests prospect and direction on ground system development in the base of such development experiences. Mission control system is needed to develop multi-satellite mission control system in the base of technology of re-configure, re-use and automation. Processing system is needed to acquire processing technology for kinds of payload sensor data and study inter-operation to integrate and use outputs which are processed between users. Finally, national ground system infrastructure is needed to operate kinds of lots of satellites at worldwide area.

정지궤도 인공위성 추력기 모델링

  • Park, Eung-Sik;Park, Bong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.96-104
    • /
    • 2003
  • Geostationary satellite propulsion system provides satellite with the velocity increment for attitude control operations and sationkeeping operations from satellite launch to de-orbit at the end of life. Today, various types of propulsion system and its thrusters are produced by worldwide manufactures. Therefore, geostationary satellite manufacturers give significant modification to the Mission Analysis Software whenever different type of propulsion system type is adopted. Mission Analysis Software is a tool for planning and verification of satellite mission. For the development of the Generalized Mission Analysis Software, many thrusters are carefully investigated and modeled.

  • PDF

OPTIMAL TRAJECTORY DESIGN FOR HUMAN OUTER PLANET EXPLORATION

  • Park Sang-Young;Seywald Hans;Krizan Shawn A.;Stillwagen Frederic H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.285-289
    • /
    • 2004
  • An optimal interplanetary trajectory is presented for Human Outer Planet Exploration (HOPE) by using an advanced magnetoplasma spacecraft. A detailed optimization approach is formulated to utilize Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine with capabilities of variable specific impulse, variable engine efficiency, and engine on-off control. To design a round-trip trajectory for the mission, the characteristics of the spacecraft and its trajectories are analyzed. It is mainly illustrated that 30 MW powered spacecraft can make the mission possible in five-year round trip constraint around year 2045. The trajectories obtained in this study can be used for formulating an overall concept for the mission.

  • PDF

A study on the autonomous control system for an unmanned surface vessel?

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.417-420
    • /
    • 2004
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environment monitoring mission, many ocean engineers had scoped with the routine and even risky works. The automatic system can replace the periodic and routine missions: water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for routine and periodic ocean environmental missions. An autonomous control system was designed and tested for the unmanned vessel. A GPS and gyro compass was used for navigation. A linear autopilot model for course control can be derived from the maneuvering model. Nomoto's 2nd-order response equation was derived. The design methodologies and performance of the surface vessel were illustrated and verified with this linearized equation of motion. A linear controller was designed and automatic route tracking performance was verified for yaw subsystem.

  • PDF

A Study on the Fuzzy Controller for an Unmanned Surface Vessel Designed for Sea Probes

  • Park, Soo-Hong;Kim, Jong-Kwon;Lee, Won-Boo;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.586-589
    • /
    • 2005
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environmental probe mission, many ocean engineers had scoped with the routine and even risky works. The unmanned surface vessel designed for sea probes can replace the periodic and routine missions such as water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for ocean environmental probe missions. A classical and an adaptive fuzzy control system were designed and tested for the unmanned surface vessel. The design methodologies and performance of the surface vessel and fuzzy control algorithm were illustrated and verified with this unmanned vessel system designed for sea probes.

  • PDF

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO)

  • Song, Min-Sup;Park, Sang-Young;Kim, Youngkwang;Yim, Jo Ryeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.