• 제목/요약/키워드: mission control

검색결과 621건 처리시간 0.023초

DEVELOPMENT OF THE KOMPSAT-2 SATELLITE MISSION CONTROL SYSTEM

  • Lee Byoung-Sun;Lee Sanguk;Mo Hee-Sook;Cho Sungki;Jung Won Chan;Kim Myungja;Kim In-Jun;Kim Tae-Hee;Joo Inone;Hwang Yoola;Kim Jaehoon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.300-303
    • /
    • 2004
  • KOMPSAT-2 satellite mission operations and control system has been developed by ETRI. The system functional architecture, analysis and design, implementation, and tests are presented in this paper.

  • PDF

한국형기동헬기 임무컴퓨터 비행필수기능 설계 (Design on Flight-Critical Function of Mission Computer for KUH)

  • 유연운;김태열;장원홍;김성우;임종봉
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.213-221
    • /
    • 2011
  • Avionics system tends to be designed to have the integrated architecture, and it is getting difficult and complex to verify the flight-critical function because of sophisticated structure. In Korean Utility Helicopter, mission computer acts as the MUX Bus Controller to handle the data from both communication, identification, mission/display and survivability equipment inside Mission Equipment Package and aircraft subsystems such as fuel system and electrical system while it is interfacing with Automatic Flight Control System and Full-Authority Digital Engine Control via ARINC-429 bus. The Flight Displays which is classified as flight-critical function in aircraft is implemented on Primary Flight Display after mission computer processes data from AFCS in order to generate graphics. This paper defines the flight-critical function implemented in mission computer for KUH, and presents the static and dynamic test procedures which is performed on System Integration Laboratory along with Playback Recorder prior to flight test.

무인이동체 및 지상국 컴퓨터 간의 시간 정보 동기화를 위한 시스템 연구 (A Study on System for Synchronization of Multiple UAVs and Ground Control System)

  • 이원석;이운상;송형규
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2020
  • In this paper, system that includes multiple unmanned aerial vehicles (UAVs) are considered. The vehicles are equipped with a mission computer for a specific mission and equipment. The mission equipment operates based on the time of mission computer. Also, data collected by flight computer and mission computer is saved with the time of each operating system. Generally, time offset between multiple computers always exists, though the computers are connected to the Internet. When the data collected by multiple computers is combined, the time offset causes damage on reliability of the combined data. Computers that connected to the Internet are synchronized by network time protocol (NTP). This paper proposes a system that the time of multiple mission computers are synchronized by the same NTP server to minimize the time offset. In the results of the measurement, the system time offset of multiple mission computer is maintained within 10ms from the system time of the server computer.

DESIGN AND IMPLEMENTATION OF THE MISSION PLANNING FUNCTIONS FOR THE KOMPSAT-2 MISSION CONTROL ELEMENT

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권3호
    • /
    • pp.227-238
    • /
    • 2003
  • Spacecraft mission planning functions including event prediction, mission scheduling, command planning, and ground track display have been developed for the KOMPSAT-2 mission operations. Integrated event prediction functions including satellite orbital events, user requested imaging events, and satellite operational events have been implemented. Mission scheduling functions have been realized to detect the mission conflicts considering the user specified constraints and resources, A conflict free mission scheduling result is mapped into the spacecraft command sequences in the command planning functions. The command sequences are directly linked to the spacecraft operations using eXtensible Markup Language(XML) for command transmission. Ground track display shows the satellite ground trace and mission activities on a digitized world map with zoom capability.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

Control Variables of Remote Joint Analysis Realization on the M2M Case

  • Lim, Sung-Ryel;Choi, Bo-Yun;Lee, Hong-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권1호
    • /
    • pp.98-115
    • /
    • 2012
  • New trend called ubiquitous leads the recent business by standardization and integration. It should be the main issue how to guarantee the integration and accountability on each business, especially in mission critical system which is mainly supported by M2M (Machine to Machine) control mechanism. This study is from the analysis of digital forensics case study that is from the M2M Sensing Control Mechanism problem of the "Imjin River" case in 2009, where a group of family is swept away to death by water due to M2M control error. The ubiquitous surroundings bring the changes in the field of criminal investigation to real time controls such as M2M systems. The needs of digital forensics on M2M control are increasing on every crime scene but we suffer from the lack of control metrics to get this done efficiently. The court asks for more accurately analyzed results accounting high quality product development design. Investigators in the crime scene need real-time analysis against the crime caused by poor quality of mission critical systems. It seems to be every need of Real-Time-Enterprise, so called ubiquitous society on the case. We try to find the efficiency and productivity in discovering non-functional design defects in M2M convergence products focusing on three metrics in study model with quick implementation. Digital forensics system in present status depends on know-how of each investigator and is hard to expect professional analysis on every field. This study set up a hypothesis "Co-working of professional investigators on each field will qualify Performance and Integrity" especially in mission critical system such as M2M and suggests "Online co-work analysis model" to efficiently detect and prevent mission critical errors in advance. At the conclusion, this study proved the statistical research that was surveyed by digital forensics specialists around M2M crime scene cases with quick implementation of dash board.

임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법 (A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers)

  • 김태현;배정일;신진범;조길석
    • 한국군사과학기술학회지
    • /
    • 제18권6호
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

우주센터 발사통제시스템의 추적연동정보 처리기능 구현 (Implementation of Slaving Data Processing Function for Mission Control System in Space Center)

  • 최용태;나성웅
    • 한국산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.31-39
    • /
    • 2014
  • 나로호 발사임무에서 추적장비에서 취득된 실시간 정보는 발사통제시스템의 처리를 거쳐서 비행안전 및 비행상태 감시 관련 운용자에 공급되어진다. 또한, 처리된 발사체의 위치정보는 각 추적 장비들의 추적 실패 시 재추적 시도를 위한 추적연동정보로 공급됨과 동시에 비행안전 감시의 목적으로 사용되어진다. 본 논문에서는 추적임무 수행에 가장 중요한 역할을 수행하는 추적연동정보 처리기능의 설계를 제안하였다. 가용한 모든 발사체 위치정보를 수집, 처리후 최적 위치정보를 선정하고 처리 과정에서 발생된 시간 지연 성분을 보상하여 각 추적시스템으로 분배한다. 추적연동정보의 처리의 정확성을 위하여 표준시각에서 추출한 25 ms 주기의 타임틱 신호를 기준으로 모든 처리 모듈의 동작이 동기화 된다. 제안한 방법의 정확도를 검증하기 위하여 레이더를 통해 수신한 위치정보와의 비교를 수행하였으며 그 오차는 평균 0.01도 이하로 나타났다.

천리안위성 정규 운영에 대한 임무계획 특성 (Characteristics of the Mission Planning for COMS Normal Operation)

  • 조영민;조혜영
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.163-172
    • /
    • 2013
  • 통신, 해양, 기상의 세 분야 복합 임무를 수행하는 천리안위성(Communication Ocean Meteorological Satellite: COMS)은 정지궤도 동경 $128.2^{\circ}$에서 2011년 4월부터 현재 정규 운영 임무를 수행하고 있다. 기상 및 해양 임무 운영과 위성 제어 및 관리를 위해 위성 임무 계획이 매일 수행되고 있다. 위성 임무 계획은 위성 실시간 운영을 통해 위성에 전송되고, 전송된 임무 계획에 따라 위성은 임무를 수행한다. 본 논문에서는 천리안위성의 임무 계획 특성으로 지상국 장비 구성과 일일, 주간, 월간, 계절별 운영 업무 특성을 논하였다. 천리안위성의 정규 운영 첫 1년간 운영 결과에 대한 토의를 통해 성공적인 임무계획 결과 확인도 제시하였다.