Value prediction is a technique to obtain performance gains by supplying earlier source values of its data dependent instructions using predicted value of a instruction. To fully exploit the potential of value speculation, however, the efficient recovery mechanism is necessary in case of value misprediction. In this paper, we propose a sequential and selective recovery mechanism for value misprediction. It searches data dependency chain of the mispredicted instruction sequentially without pipeline stalls and adverse impact on clock cycle time. In our scheme, only the dependent instructions on the predicted instruction is selectively squashed and reissued in case of value misprediction.
Control independence has been put forward as a new significant source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.
Cache memories are small fast memories used to temporarily hold the contents of main memory that are likely to be referenced by processors so as to reduce instruction and data access time. In this paper, we represent analytical models of instruction fetch process for four types of instruction cache structures that can be used for superscalar processors. In the models, we define various kinds of architectural parameters and take cache miss and branch misprediction into consideration. To prove the correctness of the proposed models, we performed extensive simulations and compared the results with the analytical models. Simulation results showed that the proposed model can estimate the instruction fetch rate accurately within 10% error in most cases. Both analytical model and simulation show that the increase of cache misses reduces the instruction fetch rate more severely than that of branch misprediction does. However, the analytical model can explain the causes of performance degradation which cannot be uncovered by the simulation method only. The model is also able to provide exact relationship between cache miss and branch misprediction for instruction fetch analysis.
Journal of Practical Agriculture & Fisheries Research
/
v.14
no.1
/
pp.3-22
/
2012
Control independence has been put forward as a significant new source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.
슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘을 제안하였다. 이러한 예상 메커니즘 중 여러 예측기를 혼합해서 사용하는 하이브리드 방법은 각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 그러한 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨으 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상이 자주 틀리는 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상시 발생하는 misprediction 페널티를 낮추고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다.
To improve the performance of wide-issue superscalar processors, it is essential to increase the width of instruction fetch and the issue rate. Removal of control hazard has been put forward as a significant new source of instruction-level parallelism for superscalar processors and the conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the branch history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a new mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the SimpleScalar 3.0/PISA tool set and the SPECINT95 benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, respectively over the original predictor.
슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령의 결과 값을 예상하는 메커니즘이 연구되고 있다. 결과 값 예상 메커니즘 중 여러 예측기를 하이브리드해서 사용하는 방법은 각각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 종전의 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨어 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상하기 어려운 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상한 misprediction 페널티를 줄이고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크 프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다
Journal of Practical Agriculture & Fisheries Research
/
v.13
no.1
/
pp.3-17
/
2011
Pipelines of processor have been growing deeper and issue widths wider over the years. If this trend continues, branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modem processors for FAFF(Food, Agriculture, Forestry, Fisheries)Information Processing. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch PC. Banks 1,2,3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13, up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.44
no.1
/
pp.33-40
/
2007
Processor pipelines have been growing deeper and issue widths wider over the years. If this trend continues, the branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modern processors. Several branch predictors combine a part of the branch address with a fixed amount of global branch history to make a prediction. These predictors cannot perform uniformly well across all programs because the best amount of branch history to be used depends on the program and branches in the program. Therefore, predictors that use a fixed history length are unable to perform up to their potential performance. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch address. Banks 1, 2, 3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13 , up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.
Conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a simple mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the Simplescalar 3.0/PISA tool set and the SPECINTgS benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14$\%$ and 9.21$\%$, respectively and the average IPC by 8.75$\%$ and 18.08$\%$, respectively over the original predictor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.