• Title/Summary/Keyword: misprediction

Search Result 24, Processing Time 0.024 seconds

Sequential and Selective Recovery Mechanism for Value Misprediction (값 예측 오류를 위한 순차적이고 선택적인 복구 방식)

  • 이상정;전병찬
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.67-77
    • /
    • 2004
  • Value prediction is a technique to obtain performance gains by supplying earlier source values of its data dependent instructions using predicted value of a instruction. To fully exploit the potential of value speculation, however, the efficient recovery mechanism is necessary in case of value misprediction. In this paper, we propose a sequential and selective recovery mechanism for value misprediction. It searches data dependency chain of the mispredicted instruction sequentially without pipeline stalls and adverse impact on clock cycle time. In our scheme, only the dependent instructions on the predicted instruction is selectively squashed and reissued in case of value misprediction.

Branch Misprediction Recovery Mechanism That Exploits Control Independence on Program (프로그램 상의 제어 독립성을 이용한 분기 예상 실패 복구 메커니즘)

  • Yoon, Sung-Lyong;Lee, Won-Mo;Cho, Yeong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.401-410
    • /
    • 2002
  • Control independence has been put forward as a new significant source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.

Performance Analyses of Instruction Fetch Models Considering Cache Miss and Branch Misprediction (캐쉬 미스와 분기예측 실패를 고려한 명령어 페치 모델의 성능분석)

  • Kim, Seon-Mo;Jeong, Jin-Ha;Choe, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.12
    • /
    • pp.685-697
    • /
    • 2001
  • Cache memories are small fast memories used to temporarily hold the contents of main memory that are likely to be referenced by processors so as to reduce instruction and data access time. In this paper, we represent analytical models of instruction fetch process for four types of instruction cache structures that can be used for superscalar processors. In the models, we define various kinds of architectural parameters and take cache miss and branch misprediction into consideration. To prove the correctness of the proposed models, we performed extensive simulations and compared the results with the analytical models. Simulation results showed that the proposed model can estimate the instruction fetch rate accurately within 10% error in most cases. Both analytical model and simulation show that the increase of cache misses reduces the instruction fetch rate more severely than that of branch misprediction does. However, the analytical model can explain the causes of performance degradation which cannot be uncovered by the simulation method only. The model is also able to provide exact relationship between cache miss and branch misprediction for instruction fetch analysis.

  • PDF

A Branch Misprediction Recovery Mechanism by Control Independence (제어 독립성과 분기예측 실패 복구 메커니즘)

  • Ko, Kwang-Hyun;Cho, Young-Il
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.3-22
    • /
    • 2012
  • Control independence has been put forward as a significant new source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.

Hybrid Value Predictor using Dynamic Classification (동적 분류를 이용한 하이브리드 결과 값 예측기)

  • Sin, Yeong-Ho;Yun, Seong-Ryong;Jo, Yeong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.11
    • /
    • pp.899-907
    • /
    • 2000
  • 슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘을 제안하였다. 이러한 예상 메커니즘 중 여러 예측기를 혼합해서 사용하는 하이브리드 방법은 각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 그러한 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨으 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상이 자주 틀리는 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상시 발생하는 misprediction 페널티를 낮추고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다.

  • PDF

A Branch Predictor with New Recovery Mechanism in ILP Processors for Agriculture Information Technology (농업정보기술을 위한 ILP 프로세서에서 새로운 복구 메커니즘 적용 분기예측기)

  • Ko, Kwang Hyun;Cho, Young Il
    • Agribusiness and Information Management
    • /
    • v.1 no.2
    • /
    • pp.43-60
    • /
    • 2009
  • To improve the performance of wide-issue superscalar processors, it is essential to increase the width of instruction fetch and the issue rate. Removal of control hazard has been put forward as a significant new source of instruction-level parallelism for superscalar processors and the conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the branch history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a new mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the SimpleScalar 3.0/PISA tool set and the SPECINT95 benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, respectively over the original predictor.

  • PDF

A Hybrid Value Predictor using Dynamic Classification in Superscalar Processors (슈퍼스칼라 프로세서에서 동적 분류를 사용한 하이브리드 결과 값 예측기)

  • Shin, Young-Ho;Yoon, Sung-Lyong;Park, Hong-Jun;Lee, Won-Mo;Kim, Ju-Ik;Cho, Young-Il
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.544-549
    • /
    • 2000
  • 슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령의 결과 값을 예상하는 메커니즘이 연구되고 있다. 결과 값 예상 메커니즘 중 여러 예측기를 하이브리드해서 사용하는 방법은 각각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 종전의 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨어 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상하기 어려운 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상한 misprediction 페널티를 줄이고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크 프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다

  • PDF

A Branch Prediction Mechanism With Adaptive Branch History Length for FAFF Information Processing (농림수산식품분야 정보처리를 위한 적응하는 분기히스토리 길이를 갖는 분기예측 메커니즘)

  • Ko, K.H.;Cho, Y.I.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.13 no.1
    • /
    • pp.3-17
    • /
    • 2011
  • Pipelines of processor have been growing deeper and issue widths wider over the years. If this trend continues, branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modem processors for FAFF(Food, Agriculture, Forestry, Fisheries)Information Processing. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch PC. Banks 1,2,3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13, up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.

A Branch Prediction Mechanism Using Adaptive Branch History Length (적응 가능한 분기 히스토리 길이를 사용하는 분기 예측 메커니즘)

  • Cho, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Processor pipelines have been growing deeper and issue widths wider over the years. If this trend continues, the branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modern processors. Several branch predictors combine a part of the branch address with a fixed amount of global branch history to make a prediction. These predictors cannot perform uniformly well across all programs because the best amount of branch history to be used depends on the program and branches in the program. Therefore, predictors that use a fixed history length are unable to perform up to their potential performance. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch address. Banks 1, 2, 3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13 , up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.

Simple Recovery Mechanism for Branch Misprediction in Global-History-Based Branch Predictors Allowing the Speculative Update of Branch History (분기 히스토리의 모험적 갱신을 허용하는 전역 히스토리 기반 분기예측기에서 분기예측실패를 위한 간단한 복구 메커니즘)

  • Ko, Kwang-Hyun;Cho, Young-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.306-313
    • /
    • 2005
  • Conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a simple mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the Simplescalar 3.0/PISA tool set and the SPECINTgS benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14$\%$ and 9.21$\%$, respectively and the average IPC by 8.75$\%$ and 18.08$\%$, respectively over the original predictor.