Objective: We investigated the oral malodor inhibitory effect of Scutellariae Radix (SR), Phellodendri Cortex (PC), Moutan Cortex (MTC) and Magnoliae Cortex (MGC) for the development of a gargle solution. Methods: 1. Against P. gingivalis and Pr. intermedia, the minimal bactericidal concentration (MBC) and the change of viable cells that were exposed to 1% each herbal extract were observed. 2. Deodorizing activity of 2% herbal extract and Garglin $Mint^{(R)}$ against methyl mercaptan were evaluated by gas chromatography (GC). 3. We used the salivary sediment system (SSS) as the malodor model. 4. The clinical examination was repeated 3 times by 2 subjects by $Halimeter^{(R)}$. Baseline VSC of each subject was measured. Then, the control subject gargled with cysteine for 30 sec. After 4 min, subjects would gargle for 30 seconds with herbal extracts (2%) and Garglin $Mint^{(R)}$. Subsequently, the concentration of VSC was measured at 0, 4, 8, 12, 16, 20, 40 and 60 minutes. Results: 1. Against P. gingivalis, MBC of SR, PC and MTC was 0.1%, and MBC of MGC was 1%. Removal time of P. gingivalis was as follows; 5 hr in MGC, 24 hr in SR and PC, and 48 hr in MTC. Against Pr. intermedia, MBC of SR and PC was 0.5%, and MBC of MTC, MGC was 1%. Removal time of Pr. intermedia was as follows; 5 hr in MTC and 24 hr in SR, PC and MGC. 2. Deodorizing effect of herbal extracts against methyl mercaptan was as follows; MGC and MTC had 100%, SR had 82.22%, PC had 66.60%, Garglin $Mint^{(R)}$ had 40.54%. 3. In the experiment using SSS, PC and MTC had statistically significant malodor-inhibitory effects (p<.05). 4. In the clinical examination, PC and MGC had statistically significant inhibitory effects at every elapsed time compared to the control subject. MTC had that until 40 min. SR had that at 0, 4, 8, 20, and 60 min. Conclusions: SR, PC, MTC and MGC have an antibacterial effect and the chemical removable activity of the oral malodor caused by VSC. These four herbs could have potential as effective anti-malodor agents.