• 제목/요약/키워드: mining wastewater

검색결과 29건 처리시간 0.02초

광산배수 수용하천의 중금속이온 평형에 관한 연구 (A Study of Heavy Metal Equilibria in Acid Mine Drainage Receiving Stream)

  • 김진범;전상호;김휘중
    • 자원환경지질
    • /
    • 제29권6호
    • /
    • pp.733-738
    • /
    • 1996
  • Heavy metal equilibria in the Dongnam stream which receives the wastewater from mining activities are investigated to provide some basic data for the management of small stream with acid mine drainage. Saturation, undersaturation, and supersaturation of some heavy metal ions with respect to some mineral phases are evaluated by saturation index (logIAP/Ksp). The $Al^{3+}$ activities showed equilibrium with $AIOHSO_4$ solid phase below a pH of 6.0. The $Fe^{3+}$ activities appeared to be controlled by Fe $(OH)_{3(amorphous)}$ solid phase below a pH of 4.0. $Zn^{2+}$ activities appeared to be regulated by $ZnCO_3$ solid phase above a pH of 6.8. Some heavy metal activities appeared to be depended upon the pH.

  • PDF

오존산화를 이용한 폐광산배수 내 용존 중금속 제거에 관한 연구 (Removal of Dissolved Heavy Metals in Abandoned Mine Drainage by Ozone Oxidation System)

  • 서석호;안광호;이정규;김건중;주경훈;라영현;고광백
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.725-731
    • /
    • 2010
  • This study was to evaluate the ozone oxidation of dissolved Fe, Mn, $SO{_4}^{2-}$ ions and color in abandoned mining drainage by conducting a bench-scale operation at various reaction times in an ozone reactor. The influent was collected from an abandoned mine drainage (AMD) near the J Mine in Jungsungun, Kangwon Province. The ozone reactor was operated at ozone reaction times of 10, 20 and 30 min with ozone doses of 0.0 and $2.4g\;O_3/hr$. Samples from each effluent from subsequent sand filtration were regularly collected and analyzed for pH, Fe, Mn, Al, Cr, Hg, $SO{_4}^{2-}$, alkalinity, color, ORP, TDS and EC. The effluent concentrations of Fe and Mn from the sand filter were less than 0.1 mg/L, which were below the concentrations on Korean drinking water quality standards (Fe, Mn < 0.30 mg/L). The influent $SO{_4}^{2-}$, concentrations were not noticeably changed during this ozone oxidation. Cr and Hg in the raw wastewater from the abandoned mining drainage were not detected in this study. The experimental result shows that the ozone oxidation of dissolved heavy metals and subsequent sand filtration of metal precipitates are desirable alternative for removing heavy metals in AMD.

납 동위원소를 이용한 안동호 퇴적물 중의 납 오염 기원 (Tracking lead contamination sources of sediments in Lake Andong using lead isotopes)

  • 박진주;김기준;유석민;김은희;석광설;신형선;김영희
    • 분석과학
    • /
    • 제25권6호
    • /
    • pp.429-434
    • /
    • 2012
  • 본 연구는 안동호 퇴적물 중의 납 오염 기원을 조사하기 위해 안동호 퇴적물, 안동호 유역의 토양, 광미퇴적물 및 아연제련시설의 부산물 중의 납 동위원소를 분석하고 국내 외 결과와 비교하였다. 안동호 퇴적물 중의 $^{207}Pb/^{206}Pb$$^{208}Pb/^{206}Pb$$0.827{\pm}0.004$$2.041{\pm}0.015$로서 광미퇴적물의 $0.815{\pm}0.002$$2.016{\pm}0.006$와 유사한 값을 나타내었으며, 토양 중 $^{207}Pb/^{206}Pb$$^{208}Pb/^{206}Pb$는 0.756~0.881 및 1.872~2.187로 퇴적물 및 광미퇴적물에 비해 넓은 범위의 납 동위원소 분포를 나타냈다. 아연 광석의 $^{207}Pb/^{206}Pb$$^{208}Pb/^{206}Pb$는 0.816~0.956(평균 0.832), 2.029~2.219(평균 2.059)로서 비교적 넓은 범위의 동위원소 조성변화를 보였으며, 폐수 및 슬러지 중의 $^{207}Pb/^{206}Pb$$^{208}Pb/^{206}Pb$는 0.883~0.905(평균 0.887), 2.127~2.156(평균 2.133)로 나타났다. 안동호 퇴적물은 연화광산의 광상과 유사한 납 동위원소 분포특성을 보였으며, 광미퇴적물과 토양에 의한 혼합 특성을, 아연제련시설의 경우, 캐나다 및 호주 등으로부터 수입된 아연 광석에 의한 납 동위원소 분포와 유사한 분포 특성을 나타냈다.

석탄 비산재로 합성한 Na-A형 제올라이트에 의한 구리와 아연 이온의 동역학적 흡착 특성 (Adsorption Kinetics of Cupper and Zinc Ion with Na-A Zeolite Synthesized by Coal Fly Ash)

  • 이창한
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1607-1615
    • /
    • 2011
  • The adsorption performance of cupper and zinc ions($Cu^{2+}$ and $Zn^{2+}$) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of $Cu^{2+}$ and $Zn^{2+}$ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed $Cu^{2+}$ and $Zn^{2+}$ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity($q_{max}$) by the Langmuir model was determined as $Cu^{2+}$ 99.8 mg/g and $Zn^{2+}$ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.

Phytochelatin synthase 발현을 통한 효모의 중금속 처리에 관한 연구 (Bioremediation of metal contamination groundwater by engineered yeasts expressing phytochelatin synthase)

  • 강소영;이원규;김재영;;김경웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.290-292
    • /
    • 2004
  • Heavy metal contamination has been increased in aqueous environments near many industrial facilities, such as metal plating facilities, mining operations, and tanneries. The soils in the vicinity of many military bases are also reported to be contaminated and pose a risk of groundwater and surface water contamination with heavy metals. The biological removal of metals through bioaccumulation has distinct advantages over conventional methods; the process rarely produces undesirable or deleterious chemical byproducts, it is highly efficient, easy to operate and cost-effective in the treatment of large volumes of wastewater containing toxic heavy metals. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment. In this study, characteristics of the cell growth and heavy metal accumulation by Saccharomyces cerevisiae strains expressing phytochelatin syntahse (PCS) gene were studied in batch cultures. The AtCRFI gene was demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells tolerated more Cd$^{2+}$ than controls.

  • PDF

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T.;Pham, Huy K.;Nguyen, Vu A.;Mai, Tung T.;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.186-198
    • /
    • 2022
  • Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.

Fish Exposure and In Situ Field Pilot Tests in the Abandoned Mine Drainage for a Stream Restoration

  • Bae, Dae-Yeul;Kim, Ju-Yong;Kim, Kyoung-Woong;An, Kwang-Guk
    • 생태와환경
    • /
    • 제40권4호
    • /
    • pp.560-568
    • /
    • 2007
  • The objectives of this study were to analyze ecological effects on effluents from the Sagok Stream (Chonnam province) as an abandoned mine drainage through necropsy-based health assessments and fish exposure tests, and to conduct In situ field pilot tests for restoration of stream water. Also, we analyzed water quality including general parameters and heavy metals. The tests were performed three times on April 2005, April 2006, and April 2007. Also, we constructed a reactor facility in the outflowing point of the abandoned mine for the remediation of AMD wastewater. In lab test, death rates in all three treatments were ${\geq}50%$ in the experiments. Necropsybased fish tissue assessments using the Health Assessment Index (HAI), indicated that the most frequently damaged tissue was liver (average: 20.8). Values of Health Assessment Index were lower in the control than any other treatments of T1, T2, and T3 and three treatments showed a distinct toxicity impacts by the AMD. In situ lethal test, concentration of Fe, Al and Zn decreased particularly by 85%, 99% and 94%, respectively through the disposal facility. Values of pH, ranged from 3.1 to 7.0, increased by 2.3 fold (mean=5.1) along with the reduction of metal contents. All fishes in P1 cage died 100% on 3 days later after the experimental setting, while all fishes in the P6 died 100% on 9 days later. Overall, these results evidently provide a key methodology for pilot test using the disposal facility and also clarify the toxicity of AMD once again, so this approach used in the pilot facilities here may reduce the acidic and toxic effects in the abandoned mining drainage.

산업부산물을 활용한 CSA 첨가량에 따른 광산 차수재 특성에 관한 연구 (A Study on the Characteristics of Mine Liner According to the Contents of CSA Using Industrial Byproducts)

  • 강석표;이영훈;강혜주;조성현;조용광
    • 한국건설순환자원학회논문집
    • /
    • 제7권1호
    • /
    • pp.74-81
    • /
    • 2019
  • 본 연구에서는 산업부산물을 활용한 CSA와 이수석고를 광산 차수재에 적용하기 위한 기초자료를 제시하고자 CSA와 이수석고 첨가량에 따른 차수재의 특성을 검토하였으며 그 결과를 다음과 같이 나타내었다. CSA 첨가량에 따른 광산 차수재의 압축강도, 길이변화, 흡수율 측정결과 CSA30%까지는 초기재령에서의 강도증가와 더불어 수축 및 흡수율저감 효과에 긍정적인 영향을 미치는 것으로 나타났다. 그러나 CSA50%에서는 과량 사용으로 인하여 수축보상 및 공극충진보다는 과팽창으로 인한 흡수율 증가와 시멘트양 감소로 인하여 OPC와 비교하여 15% 감소하였다.

폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석 (Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water)

  • 김다연;이성유;황용우;권택관
    • 자원리싸이클링
    • /
    • 제32권2호
    • /
    • pp.12-18
    • /
    • 2023
  • 우리나라는 2018년 기준 전기전자 분야에서 은 수요는 249백만 톤으로 조사되었으며, 태양광 모듈용으로는 81백만 톤으로 조사되었다. 현재 태양광 모듈 설치의 급증으로 해당 분야의 은 사용량 또한 증가하고 있는 추세이다. 그러나 우리나라의 금속자원 및 부존량은 소비량 대비 부족한 실정이며, 금속자원 중 은광의 국내 자급률은 2021년 기준 약 2.2%로 매우 낮은 상황으로 조사되어 이를 개선하기 위해 금속산업에서 발생하는 폐도금액내 함유되어 있는 유가금속 자원회수기술을 통한 재활용이 필요하다고 판단된다. 따라서, 본 연구에서는 전과정평가를 통해 폐도금액 내 유가금속 회수공정 개선에 따른 영향평가 결과를 비교 분석하고자 하였다. 그 결과, 개선을 통해 GWP 및 ADP는 각각 약 49% 및 67% 저감되는 것으로 나타났다. 그 중, 전기 및 상수의 GWP는 각각 98% 및 93% 저감되는 것으로 나타나 에너지 소비 최소화에 크게 기여하는 것으로 나타났다. 따라서, 재자원화 기술의 발전이 화학물질 및 에너지의 사용 절감할 수 있으며, 이를 통해 도시광산산업에서 자원생산성을 향상시킬 수 있을 것으로 판단된다.