• 제목/요약/키워드: mining project

검색결과 161건 처리시간 0.038초

프로모터 염기서열 분석을 위한 데이터 마이닝 기법 (Data Mining Techniques for Analyzing Promoter Sequences)

  • 김정자;이도헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.328-332
    • /
    • 2000
  • 최근 지놈(Genome) 프로젝트를 통해 DNA 염기서열에 대한 정보가 밝혀짐에 따라 분자 수준의 유전자 정보를 다루는 기법이 활발히 연구되고 있다. 그리고 밝혀진 서열정보들의 방대함으로 미루어볼 때 이들 정보를 데이터베이스화하고 효과적인 분석을 행하기 위한 새로운 컴퓨터의 알고리즘의 개발 또한 시급한 일이다. 이러한 측면에서 ,본 논문에서는 분자생물학에서 매우 중요한 연구 대상으로 삼고있는 프로모터 서열과 유전자간의 연관성으로 발현되는 특징을 알아내기 위한 연관 규칙 탐사 알고리즘을 연구한다. 기존의 탐사 알고리즘은 트랜잭션 데이터를 대상으로 하지만 본 논문에서는 생물학적 데이터를 대상으로 하였기 때문에 데이터의 형태와 생물학적인 특성을 수용하는 변형된 연관규칙 알고리즘을 설계한다. 본 연구를 통하여 얻어진 결과는 실제 생물학적 실험'대상의 후보조합을 최소화 하므로써 많은 시간과 노력 비용을 절감할 수 있다.

  • PDF

2DSpotDB: A Database for the Annotated Two-dimensional Polyacrylamide Gel Electrophoresis of Pathogen Proteins

  • Kim, Dae-Won;Yoo, Won-Gi;Lee, Myoung-Ro;Kim, Yu-Jung;Cho, Shin-Hyeong;Lee, Won-Ja;Ju, Jung-Won
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.197-199
    • /
    • 2011
  • The biological interpretation of two-dimensional (2D) gel electrophoresis experiments is a key step toward understanding the functions of biological systems. We here present a web-based integrated database, called 2DSpotDB, for the management of proteome data derived from several pathogens. The 2DSpotDB was established as a part of the management of a pathogen proteome project at the Korea National Institute of Health. The goals of the 2DSpotDB implementation are to store and define important pathogen genes, retrieve information obtained by 2D polyacrylamide gel electrophoresis and mass spectrometry, and create an integrated system to provide pathogen proteome information for biological scientists. This database currently contains 14 gels and information on 387 protein spots, among which 329 proteins were identified and annotated.

프로모터 염기서열 분석을 위한 데이터 마이닝 기법 (Data Mining Techniques for Analyzing Promoter Sequences)

  • 김정자;이도헌
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.739-744
    • /
    • 2000
  • 최근 지놈(Genome) 프로젝트를 통해 DNA 염기서열에 대한 정보가 밝혀짐에 따라 분자 수준의 유전자 정보를 다루는 기법이 활발히 연구되고 있다. 그리고 밝혀진 서열정보들의 방대함으로 미루어볼 때 이들 정보를 데이터베이스화하고 효과적인 분석을 행하기 위한 새로운 컴퓨터의 알고리즘의 개발 또한 시급한 일이다. 이러한 측면에서 본 논문에서는 분자생물학에서 매우 중요한 연구 대상으로 삼고있는 프로모터 서열과 유전자간의 연관성으로 발현되는 특징을 알아내기 위한 연관 규칙 탐사 알고리즘을 연구한다. 기존의 탐사 알고리즘은 트랜잭션 데이터를 대상으로 하지만 본 논문에서는 생물학적 데이터를 대상으로 하였기때문에 데이터의형태와 생물학적인 특성을 수용하는 변형된 연관규칙 알고리즘을 설계한다. 본 연구를 통하여 얻어진 결과는 실제 생물학적 실험대상의 후보조합을 최소화 하므로써 많은 시간과 노력 비용을 절감할 수 있다.

  • PDF

PACRIM SCIENCE APPLICATIONS: A DECADE WITH AIRSAR

  • Milne, A.K.;Tapley, I.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.428-428
    • /
    • 2002
  • The scientific objectives of PACRIM (Pacific Rim) are to advance the understanding of polarimetric and interferometric radar and to promote its application in environmental research designed to detect and quantify changes found in both the physical and humanly dominated ecosystems on the earth's surface. The information derived is used to more readily identify environments at risk; improve environmental decision making and the management of resources and thereby lead to the implementation of more effective and sustainable land use practices. PACRIM is a collaborative research project was organized by NASA's Mission to Planet Earth, Airborne Sciences Program; the Jet Propulsion Laboratory; CSIRO-COSSA and the Centre for Remote Sensing and GIS at the University of New South Wales. A decade of working with AIRSAR data (1993-2003) in the Australia-Asian-Pacific region has provided the opportunity for more than 400 investigators from 20 countries to collect, analyse, interpret and apply state-of-the-art radar data to earth-science studies. This has been achieved by scientists working within seven broad research themes; o Forestry and vegetation o Geology and tectonic processes o Interferometry o Disaster management o Coastal analysis o Agriculture o Urban and regional development. This paper presents an overview of the three data acquisition missions (1993,1996 and 2000) and the science research outcomes achieved from analyzing high quality radar data.

  • PDF

Experimental and numerical investigation of the effect of sample shapes on point load index

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Hosseini, Seyed Shahin
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.1045-1055
    • /
    • 2017
  • Tensile strength is considered key properties for characterizing rock material in engineering project. It is determined by direct and indirect methods. Point load test is a useful testing method to estimate the tensile strengths of rocks. In this paper, the effects of rock shape on the point load index of gypsum are investigated by PFC2D simulation. For PFC simulating, initially calibration of PFC was performed with respect to the Brazilian experimental data to ensure the conformity of the simulated numerical models response. In second step, nineteen models with different shape were prepared and tested under point load test. According to the obtained results, as the size of the models increases, the point load strength index increases. It is also found that the shape of particles has no major effect on its tensile strength. Our findings show that the dominant failure pattern for numerical models is breaking the model into two pieces. Also a criterion was rendered numerically for determination of tensile strength of gypsum. The proposed criteria were cross checked with the results of experimental point load test.

Feasibility to Expand Complex Wards for Efficient Hospital Management and Quality Improvement

  • CHOI, Eun-Mee;JUNG, Yong-Sik;KWON, Lee-Seung;KO, Sang-Kyun;LEE, Jae-Young;KIM, Myeong-Jong
    • 산경연구논집
    • /
    • 제11권12호
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: This study aims to explore the feasibility of expanding complex wards to provide efficient hospital management and high-quality medical services to local residents of Gangneung Medical Center (GMC). Research Design, Data and Methodology: There are four research designs to achieve the research objectives. We analyzed Big Data for 3 months on Social Network Services (SNS). A questionnaire survey conducted on 219 patients visiting the GMC. Surveys of 20 employees of the GMC applied. The feasibility to expand the GMC ward measured through Focus Group Interview by 12 internal and external experts. Data analysis methods derived from various surveys applied with data mining technique, frequency analysis, and Importance-Performance Analysis methods, and IBM SPSS statistical package program applied for data processing. Results: In the result of the big data analysis, the GMC's recognition on SNS is high. 95.9% of the residents and 100.0% of the employees required the need for the complex ward extension. In the analysis of expert opinion, in the future functions of GMC, specialized care (△3.3) and public medicine (△1.4) increased significantly. Conclusion: GMC's complex ward extension is an urgent and indispensable project to provide efficient hospital management and service quality.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Comparison of the Performance of Clustering Analysis using Data Reduction Techniques to Identify Energy Use Patterns

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.559-563
    • /
    • 2015
  • Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.

  • PDF

DATA MININING APPROACH TO PARAMETRIC COST ESTIMATE IN EARLY DESIGN STAGE AND ANALYTICAL CHARACTERIZATION ON OLAP (ON-LINE ANALYTICAL PROCESSING)

  • JaeHo Cho;HyunKyun Jung;JaeYoul Chun
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.176-181
    • /
    • 2011
  • A role of cost modeler is that of facilitating design process by the systematic application of cost factors so as to maintain sensible and economic relationships between cost, quantity, utility and appearance. These relationships help to achieve the client's requirements within an agreed budget. The purpose of this study is to develop a parametric cost estimating model for the early design stage by using the multi-dimensional system of OLAP (On-line Analytical Processing) based on the case of quantity data related to architectural design features. The parametric cost estimating models have been adopted to support decision making in the early design stage. These models typically use a similar instance or a pattern of historical case. In order to effectively use this type of data model, it is required to set data classification and prediction methods. One of the methods is to find the similar class in line with attribute selection measure in the multi-dimensional data model. Therefore, this research is to analyze the relevance attribute influenced by architectural design features with the subject of case-based quantity data used for the parametric cost estimating model. The relevance attributes can be analyzed by Analytical Characterization. It helps determine what attributes to be included in the OLAP multi-dimension.

  • PDF

텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안 (Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining)

  • 김익준;이준호;김효민;강주영
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.149-169
    • /
    • 2020
  • 현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.