• Title/Summary/Keyword: minimum weight design

Search Result 353, Processing Time 0.02 seconds

Optimum design of steel space frames under earthquake effect using harmony search

  • Artar, Musa
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.597-612
    • /
    • 2016
  • This paper presents an optimization process using Harmony Search Algorithm for minimum weight of steel space frames under earthquake effects according to Turkish Earthquake Code (2007) specifications. The optimum designs are carried out by selecting suitable sections from a specified list including W profiles taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-Load and Resistance Factor Design (LRFD) specifications, lateral displacement constraints and geometric constraints are considered in the optimum designs. A computer program is coded in MATLAB for the purpose to incorporate with SAP2000 OAPI (Open Application Programming Interface) to perform structural analysis of the frames under earthquake loads. Three different steel space frames are carried out for four different seismic earthquake zones defined in Turkish Earthquake Code (2007). Results obtained from the examples show the applicability and robustness of the method.

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Development of a Costing Model for Wooden Patterns of Casting Structures for Machine Tools

  • Seo, Han-Tae;Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.386-393
    • /
    • 2015
  • A study is carried out on investigation on pattern costs, identification of geometric parameters for the cost, and development of cost estimation models for casting patterns. Pattern costs for machine tool structures are collected and analyzed to identify the important geometric parameters that affect the costs. The parameters are used for the development of the costing models. It is found that the geometric parameters can be easily obtained from a CAD system and then the costing models estimate a pattern cost in a minimum time. The models are verified with the structures whose pattern cost was used for this study. It is expected that this costing models can evaluate the cost of casting structures of machine tools in search of a near-optimal design based on manufacturing cost and, for example, weight at the design stage.

Application of DCOC for Minimum Cost Design of Reinforced Concrete Continuous Beam (철근 콘크리트 연속보의 최소경비설계를 위한 DCOC의 적응)

  • Chung, Hoon;Cho, Hong-Dong;Han, Sang-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.176-183
    • /
    • 1999
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for the reinforced concrete continuous beams. The cost of construction as objective function which includes the costs of concrete, reinforced steel, formwork is minimized. The design constraints include limits on the maximum deflection in a given span, on bending and shear strengths, optimality criteria is given based on the well known Kuhn-Tucker necessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. The self-weight of the beam is included in the equilibrium equation of the real system. Two numerical examples of reinforced concrete continuous beams with rectangular cross-section are solved to show the applicability and efficiency for the DCOC-based technique

  • PDF

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Evaluation Technology for the Improvement of Brake Performance and Friction Coefficient of Tread Brake Shoe (답면 브레이크 슈의 마찰계수와 제동성능향상을 위한 평가기술)

  • Choi Kyung-Jin;Lee Dong-Hyung;Lee hisung;Song Mun-Suk;Shin You-Jung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.377-382
    • /
    • 2003
  • In tread braking of freight cars, braking force is produced by the friction between the wheel and the braking shoe. Friction coefficients such as the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and weighted, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of braking time and temperature. This study presented an experimental evaluation method to secure optimum braking performance by keeping safe braking effect and braking distance by the friction coefficient of the brake shoe of the freight cars.

  • PDF

Evaluation Technology for Brake Performance of Tread Brake Shoe (답면 브레이크 슈의 제동성능 평가 기법)

  • Choi Kyung-Jin;Lee Hi-Sung
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • In tread brake of freight cars, brake force is produced by the friction between the wheel and the brake shoe. Friction coefficients associated with the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and loaded, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake friction materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake friction materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of brake time and temperature. This study presented an experimental evaluation method to secure optimum brake performance by keeping safe brake effect and brake distance by the friction coefficient of the brake shoe of the freight cars.

Experiments on Stability of Tetrapods on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition (월파조건에서 경사제 항내측 사면에 거치된 테트라포드의 안정성 실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.357-366
    • /
    • 2021
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and harbor side (within 0.5H from the minimum design water level) slope of rubble mound structures. The super structures were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The stability number (Nod = 0.5) was applied (van der Meer, 1999) and it showed that the armor (tetrapod) weight ratio for harbor side slope of rubble mound structures needed 0.8 times of that for sea side slope.

A Study on the Minimum Weight and/or Cost Design of a Midship Structure of Oil Tanker (최소중량(最小重量) 및 건조비(建造費)를 위한 유조선(油槽船) 중앙단면(中央斷面) 설계(設計)에 관한 연구(硏究))

  • Z.G.,Kim;M.W.,Eo;J.G.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 1983
  • In this light of economical engineering, the optimal configurations of ship structure that can save weights, production costs and operation costs should be investigated. This paper presents the general method of optimization based on non-linear programming and its application to weight and/or cost minimization of ship structure. Oil tanker is chosen as a ship type because of simple layout and easy calculation of stress. With the data of 16,200 DWT oil tanker built by KSEC 1980, this paper shows the procedure mentioned above by means of SUMT combined with two selected search methods. Then the differences between original and redesigned tanker structures are discussed.

  • PDF

Development of a Computer Program for Bulk-type Container Design using Optimum Design Parameter Analysis (산물형 포장상자의 최적설계 요인분석에 의한 설계 프로그램 개발)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • If an optimum design technique is applied in the design of packaging container for bulk-type products, merits on the side of not only economic and compression performance but distribution efficiency are expected. Accordingly, minimum board area (mRBA), compression strength (CS) and compression strength per unit area (mCSPA) are important design parameters in optimum design of packaging container for bulk-type products. In this study, mathematical models for mRBA, CS and mCSPA of container as algorithm for optimum design program were developed. In order to develop these models, compression test by various dimensions of container and response surface analysis for mRBA, CS, and mCSPA of container were carried out. In the developed models, volume, W/L ratio and depth of container were principal independent variables. On the found of these models, optimum design program having faculties of outward and inward optimum design and information design was developed. Though the packaging specifications are same, required board area, board combination and cost of the corrugated board required container manufacture were greatly different by boundary conditions in outward design. Moreover, about 6.3∼10.1% in weight of container was lighter, and about 13.2∼25.6% in cost of container was reduced when the program was applied for 2 kinds of bulk-type products.