• Title/Summary/Keyword: minimum tensile strength

Search Result 143, Processing Time 0.025 seconds

Synthesis and Friction Properties of Oil-impregnated Nylon 6 (오일함침 나일론 6의 합성 및 마찰특성)

  • Chung, Dae-won;Kang, Suck-choon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.726-728
    • /
    • 1998
  • Oil-impregnated nylons were synthesized by anionic polymerization of ${\varepsilon}$-caprolactam in the presence of mineral oils. Reaction rate and molecular weight of the product were not significantly affected by the addition of oils less than 8 phr. Physical properties such as elongation and notched impact strength were improved by the addition of oil, on the other hand hardness and tensile stress at break were slightly decreased. Oil-impregnated nylon with an oil content of 6 phr showed a minimum friction coefficient, which is only 32% compared to a friction coefficient of nylon 6 without oil.

  • PDF

The Analysis of the Mechanical Characteristic of Bamboo Net (대나무 망의 역학적 특성분석)

  • Yang, Kee-Sok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • Examining the mechanical characteristic of the bamboo net structure is necessary in order to evaluate the influence of bending rigidity of bamboo on bearing capacity, however, there is no equipment to examine such mechanical behavior of the bamboo net structure in the world. In this study, a specific equipment to examine stress-strain behavior characteristics of the structure of bamboo net is developed. In comparison with Bamboo's stress-strain behavior characteristic and vertical stress caused by various dozer equipments, the case of estimating minimum embedded depth considering ground settlement is analyzed.

AN EXPERIMENTAL STUDY ON THE RESIDUAL STRESS AND BOND STRENGTH OF CERAMO-METAL SYSTEM (치과도재용(齒科陶材用) 합금(合金)과 도재간(陶材間)의 잔류응력(殘溜應力) 및 결합강도(結合强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Gi-Jin;Bae, Tae-Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.67-84
    • /
    • 1991
  • This study was carried out to investiagate the residual stress caused by the mismatch of thermal expansion and the bond failure resistance of alloy-porcelain specimens. The thermal expansions of alloys and porcelains were measured by using a straight push-rod dilatometer. Porcelain glass transition temperatures, thermal expansion coefficients, and thermal compatibility indices were derived from length-versus-temperature curves. Strain gauges were used to experimentally determine the Young's moduli of porcelains, the residual stresses of porcelain surface, and tensile bond strengths of the specimens of simulated porcelain metal crown. The obtained results were as follows: 1. The coefficients of thermal expansion for alloys were the minimum of $13.53\mu/^{\circ}C$ and the maximum of $20.11\mu/^{\circ}C$ in the range of $100\sim600^{\circ}C$ and those for porcelains were the minimum of $7.72\mu/^{\circ}C$ and the maximum of $31.24\mu/^{\circ}C$ in the range of $100\sim500^{\circ}C$. 2. The glass transition temperature of porcelains exhibited the same value without my relation to the healing rate, and the thermal disharmony of porcelain and alloy was more affected by porcelains than by the alloys. 3. The Young's moduli of body porcelains were larger than those of opaque porcelains(P<0.01) 4. It seemed that the residual stresses of porcelain surfaces in the porcelainalloy systems were more affected by porcelains than by alleys. 5. The bond strengths of the procelain-base metal alloy systems were larger than those of the porcelain-precious metal alloy systems. The fracture strengths of porcelain surfaces showed significant difference between porcelains (P<0.05).

  • PDF

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

A Study on Grouting Technology Using Expansion Double Packers for Sectional Blocking between Groundwater Borehole and Inner Casing (확장형 이중패커를 이용한 지하수 공벽과 내부케이싱의 구간차폐 그라우팅 기술에 대한 연구)

  • Cho, Heuy Nam;Choi, Sung Ouk;Park, Jong Oh;Bae, Sei Dal;Lee, Byung Yong;Choi, Sang Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • In installation of groundwater wells, grouting materials are injected between the groundwater borehole and the inner casing in order to prevent infiltration of contaminated groundwater from the top soil layers into wells. The injection device of grouting materials is commonly composed of an inlet head device with an expansion packer, a cylinder capable of storing the grouting materials, and an air cylinder. In this work, two types of common grouting materials, silicon and cement materials, were tested for their performances as grouting media. For silicon. silicon was mixed with clay or calcite, and tested for their tensile strength and underwater reactivity. Both silicon-clay and silicon-calcite mixtures had adequate flow and adhesiveness. For cement material, general cement, ultra-rapid harding cement, and natural cement were respectively mixed with three different soil types including coarse-grained granite, fine-grained granite, and gneiss, and direct shearing tests were conducted after hardening. Under grouting depth condition of 30 m, the minimum adhesive strength was greater for weathered gneiss than non-weathered gneiss with its maximum values obtained from the mixtures of ultra rapid-harding cement.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer (유화 중합에 의한 비닐 아세테이트-부틸 아크릴레이트 공중합체의 합성 연구)

  • 설수덕;임종민
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) prepared by emulsion polymerization has broad applications for additives such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly(vinyl acetate-co-butyl acrylate) (VVc-BA) was synthesized using potassium persulfate as catalyst and poly(vinyl alcohol) (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced colloid stability, adhesion, tensile strength and elongation. During VAc-BA emulsion polymerization, no coagulation and complete conversion occur with the reactant mixture of 0.7wt% potassium persulfate, 15wt% poly(vinyl alcohol) (PVA-217), and the balanced monomer that the weight ratio of vinyl acetate to butyl acrylate is 19. As the concentrations of PVA increase, the copolymerization becomes faster and polymer particles are more stable, resulting in enhanced mechanical stability of the VAc-BA copolymer. However, the size of the polymer particles decreases with increasing PVA contents. Properties of the VAc-BA copolymer, such as minimum film formation temperature, glass transition temperature, surface morphology, molecular weight and molecular weight distribution, tensile strength and elongation, were characterized using differential scanning calorimeter, transmission electron microscope and other instruments.

Preparation of Heterogeneous Bipolar Membranes Using Poly (phenylene oxide, PPO) Polyelectrolyte and Their Water Splitting Properties (Poly (phenylene oxide, PPO) 고분자 전해질을 이용한 불균질 바이폴라막 제조 및 물분해 특성)

  • Kim, In Sik;Hwang, Seong Yeon;Kang, Byung Gwan;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • In this study, heterogeneous ion exchange membranes were prepared by casting method with various mixing ratios of PPO ion-selective solution and ion exchange resin. Then heterogeneous bipolar membranes were prepared by using this. The water content of heterogeneous cation and anion exchange membranes were 60~80% respectively, the ion exchange capacity was 2.81~3.26 meq/g, 2.31~2.74 meq/g and electrical resistances were $1.65{\sim}1.45{\Omega}{\cdot}cm^2$ and $1.55{\sim}1.05{\Omega}{\cdot}cm^2$. The tensile strength of heterogeneous bipolar membrane was lower than that of PPO resin before functionalization ($700Kg_f/cm^2$). The tensile strength of heterogeneous bipolar membrane with catalyst layer was lower than that of non-catalytic heterogeneous bipolar membrane. The water splitting voltage of the heterogeneous bipolar membrane with catalyst layer was low and stable at a minimum of 1.7~1.8 V, maximum 3.9~4.0 V, and the water splitting voltage of the non-catalytic heterogeneous bipolar membrane was constant at 3.8~4.0 V.