• Title/Summary/Keyword: minimum set of periods

Search Result 13, Processing Time 0.026 seconds

MINIMAL SETS OF PERIODS FOR MAPS ON THE KLEIN BOTTLE

  • Kim, Ju-Young;Kim, Sung-Sook;Zhao, Xuezhi
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.883-902
    • /
    • 2008
  • The main results concern with the self maps on the Klein bottle. We obtain the Reidemeister numbers and the Nielsen numbers for all self maps on the Klein bottle. In terms of the Nielsen numbers of their iterates, we totally determine the minimal sets of periods for all homotopy classes of self maps on the Klein bottle.

Dynamic Replication Based on Availability and Popularity in the Presence of Failures

  • Meroufel, Bakhta;Belalem, Ghalem
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.263-278
    • /
    • 2012
  • The data grid provides geographically distributed resources for large-scale applications. It generates a large set of data. The replication of this data in several sites of the grid is an effective solution for achieving good performance. In this paper we propose an approach of dynamic replication in a hierarchical grid that takes into account crash failures in the system. The replication decision is taken based on two parameters: the availability and popularity of the data. The administrator requires a minimum rate of availability for each piece of data according to its access history in previous periods, but this availability may increase if the demand is high on this data. We also proposed a strategy to keep the desired availability respected even in case of a failure or rarity (no-popularity) of the data. The simulation results show the effectiveness of our replication strategy in terms of response time, the unavailability of requests, and availability.

The method of period division and range setting for annual river discharge management (연중 하천유량 관리를 위한 기간 구분 및 관리범위 설정 방안)

  • Park, Tae Sun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Until now, the periods of river discharge management throughout a year are divided into flood and non-flood periods, and the ranges of discharges to be managed are broadly defined from drought discharge to flood discharge. In this study, using the long-term daily discharge data from 8 points of four major rivers, we propose a method of dividing the year into several periods with the homogeneous mean and dispersion of discharges. As a result of the study, the period of through a year was different depending on the point, but it could be divided into pre-flood period, flood period, and post-flood period. And the more subdivided the period, the more decreased the ratio of the maximum discharge to the minimum discharge. In addition, in order to ensure that the discharge for a year is more than the drought discharge and less than the flood discharge, to set the range of discharge management per period as the average flow ± standard deviation for each period is proposed.

The Analysis of the Correlation between Groundwater Level and the Moving Average of Precipitation in Kum River Watershed (금강유역에서의 지하수위와 강수량 이동평균의 상관관계 분석)

  • Yang, Jeong-Seok;Ahn, Tae-Yeon
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Precipitation and groundwater level data sets from Kum river watershed were analyzed and compared. The correlation between groundwater level and the moving average of precipitation was analyzed. Moving averaging technique is stochastic method and that was used to consider the effect of precipitation events on groundwater level fluctuation. Groundwater level generally follows seasonal precipitation pattern and low level occurs from early December to late April. Relatively high groundwater level is appeared in wet spell (July and August). The correlation between groundwater level and the moving average of precipitation to consider precedent precipitation events was analyzed with minimum two-year data sets. When the precipitation and groundwater level data set pair was selected the precipitation gauge station is closely located to groundwater level gauge station in the upstream direction to minimize the non-homogeneous precipitation distribution effect. The maximum correlation was occurred when the averaging periods were from 10 days to 150 days with Kum river watershed data. The correlation coefficients are influenced by data quality, missing data periods, or snow melt effect, etc. The maximum coefficient was 0.8886 for Kum river watershed data.

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.

Analysis of the Tsyganenko Magnetic Field Model Accuracy during Geomagnetic Storm Times Using the GOES Data

  • Song, Seok-Min;Min, Kyungguk
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2022
  • Because of the small number of spacecraft available in the Earth's magnetosphere at any given time, it is not possible to obtain direct measurements of the fundamental quantities, such as the magnetic field and plasma density, with a spatial coverage necessary for studying, global magnetospheric phenomena. In such cases, empirical as well as physics-based models are proven to be extremely valuable. This requires not only having high fidelity and high accuracy models, but also knowing the weakness and strength of such models. In this study, we assess the accuracy of the widely used Tsyganenko magnetic field models, T96, T01, and T04, by comparing the calculated magnetic field with the ones measured in-situ by the GOES satellites during geomagnetically disturbed times. We first set the baseline accuracy of the models from a data-model comparison during the intervals of geomagnetically quiet times. During quiet times, we find that all three models exhibit a systematic error of about 10% in the magnetic field magnitude, while the error in the field vector direction is on average less than 1%. We then assess the model accuracy by a data-model comparison during twelve geomagnetic storm events. We find that the errors in both the magnitude and the direction are well maintained at the quiet-time level throughout the storm phase, except during the main phase of the storms in which the largest error can reach 15% on average, and exceed well over 70% in the worst case. Interestingly, the largest error occurs not at the Dst minimum but 2-3 hours before the minimum. Finally, the T96 model has consistently underperformed compared to the other models, likely due to the lack of computation for the effects of ring current. However, the T96 and T01 models are accurate enough for most of the time except for highly disturbed periods.

An Automatic Portscan Detection System with Adaptive Threshold Setting

  • Kim, Sang-Kon;Lee, Seung-Ho;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

A Study on the Operation Boundary of Ramp Metering System (진입제어 전략 적용 시 적정 운영영역 설정에 관한 연구)

  • Kim, Kyu-Ok;Park, Joon-Hyeong;Park, Ji-Eun;Shin, Hee-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.9-21
    • /
    • 2011
  • The ramp metering strategy is one of the effective ways to solve the freeway traffic congestion in peak time periods. The study was initiated with assurance that the traffic conditions of ramp and mainline that mitigate the congestion would exist. Under the moderate traffic volume levels, ramp metering is expected to improve the quality of freeway operation. To derive a range of traffic condition, three operation strategies(Do nothing, ramp metering, minimum ramp control) were set up and the ALINEA algorithm was implemented with microscopic traffic simulator "VISSIM". The volumes of mainline and ramp are key parameters for the simulation scenarios. Measures of effectiveness for the study include mainline density and average vehicle speed. Operation boundaries in terms of traffic volume were proposed for operating ramp metering strategy. The results show that under the proposed traffic conditions the ramp metering was more successful to increase average vehicle speeds. Traffic controls under the operation boundaries of traffic levels give significant effects for density and average vehicle speed. The outcomes of this study would be useful to improve the performance of ramp metering strategies.