• Title/Summary/Keyword: minimum safety factor

Search Result 149, Processing Time 0.025 seconds

A Comparative Study of Safe Factor of Slope according to Analysis Methods (해석 방법에 따른 비탈면 최소안전율 비교 연구)

  • Ryu, Hang Taek;Jang, Jeong Wook;Chung, Youn In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.5
    • /
    • pp.207-216
    • /
    • 2018
  • This research compared and analyzed safety ratio of slope with Talren97 and SoilWorks based on limit equilibrium analysis and Midas GTS based on finite element analysis. For the analysis variables, there are slope height, berm condition, soil parameter, groundwater level, slope inclination. All of slope stability analysis were performed by dividing into dry season and rainy season. As the result of the analysis of Talren97 and SoilWorks based on same theory, safety ratio of slope shows same value, so there was no difference between the programs. In comparison with limit equilibrium analysis, the result of finite element analysis showed somewhat high ratio of safety and it was higher by about 2.4% averagely. The difference between the result of limit equilibrium analysis and that of finite element analysis is in the range which can ignored in practical work.

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes) (BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

An Assessment of Rock Pillar Behavior in Very Near Parallel Tunnel (초근접 병설터널의 암반 필라 거동 평가)

  • Kim, Won-Beom;Yang, Hyung-Sik;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • Focusing on the load tunnel, this study assessed the behavior of rock pillars with less than 0.5D of the minimized distance between the two horizontal tunnels by using a three dimensional numerical analysis. Based on a parameter affecting the behavior of rock pillars, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the pillar width increases, the current curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. Judging from the minimum safety factor, the study suggested a design chart, working on the minimized distance between the two horizontal tunnels.

Reliability study of CFRP externally bonded concrete beams designed by FIB bulletin 14 considering corrosion effects

  • Dehghani, Hamzeh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.191-198
    • /
    • 2022
  • FIB is introduced as the sole guideline for the design purpose that results in a practical relationship for the torsional capacity of concrete beams strengthened with carbon fiber-reinforced polymer (CFRP). This study applies first-order reliability method to assess the reliability evaluation of the torsional capacity of CFRP-strengthened beams on the basis of FIB guidelines. In terms of steel reinforcement losses, this study applies a corrosion model to investigate the ceaseless deterioration of the existing structure. Hence, the average of reliability indices varies between 2.68 and 2.80, indicating the reliability viewpoint of the design methodologies. The average values are somehow low compared to the target values of reliability (3.0 or 3.5) applied in the calibration stage of the FIB guideline. In this way, the partial safety factors may change in the forthcoming guideline revisions. For this aim, the reliability of strengthening ratio was applied to assess the variation in the average value of the reliability index with different partial safety factors. The performance of parametric study for the factor proved that minimum values of 1.60 and 2.32 are required for target values of reliability (3.0 and 3.5), respectively.

Effects of Dissolved Organic Nitrogen on the Growth of Dominant Phytoplankton in the Southwestern Part of East Sea in Late Summer (늦여름 동해 남서해역에서 용존 유기 질소가 우점 식물플랑크톤의 생장에 미치는 영향)

  • Kwon, Hyeong-Kyu;Jeon, Seul-Gi;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2016
  • We investigated the distribution of dissolved nutrients, phytoplankton community structure and utilization of nitrogen compounds by dominant species in the southwestern part of East Sea in September, 2014. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were lower in the surface layer, and concentrations were increased with depth. Dissolved organic nitrogen (DON) and dissolved organic phosphorus were the opposite of dissolved inorganic nutrients. Although DIN DIP ratio in all of the water masses was higher than Redfield ratio (16), DIN : DIP ratio in mixed layer was about 2, indicating that inorganic nitrogen is the limiting factor for the growth of phytoplankton. In particular, DON proportion in dissolved total nitrogen was about 88 % in the mixed layer where inorganic nitrogen is limiting factor. The dominant species Chaeotceros debilis and Prorocentrum minimum were able to grow using DIN as well as DON such as urea and amino acids. Therefore, DON utilization of phytoplankton may play a role as a survival strategy in the DIN-limited conditions of East Sea.

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

Analysis of Live Load Factor for Bridge Evaluation Through Reliability Based Load Factor Calibration (신뢰도기반 하중계수 캘리브레이션을 통한 교량 평가 활하중계수 분석)

  • Yoo, Min-Sun;Kim, Kyung-Hyun;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.212-221
    • /
    • 2022
  • In this paper, the evaluation procedure applying the limit state design method is studied to be consistent with the newly issued bridge design code in Korea. The live load factor for evaluation is proposed by calibrating for the target reliability index through reliability analysis. Using the actual bridge information collected for the representative bridge types in Korea, the load effects of the design live loads for the previous and current design codes are calculated and compared. The live load factor is calibrated through reliability analysis using the minimum required strength which equals to the load effect obtained for the example bridge. Bridge evaluation is performed by applying the live load factors for the evaluation level as well as design level. The load rating result is generally increased by applying the limit state design method compared to the previous design method and applying the proposed load factor for lowered target reliability index further increased the rating result.

The Relationship between Climate and Food Incidents in Korea (식품안전 사건 사고와 기후요소와의 관련성)

  • Lee, Jong-Hwa;Kim, Young-Soo;Baek, Hee-Jung;Chung, Myung-Sub
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.297-307
    • /
    • 2011
  • This study investigates relation of food safety incidents with climate. Therefore food safety incidents and climate data during 1999 to 2009 have been analyzed. In situ observations of monthly mean temperature, maximum temperature, minimum temperature, precipitation, and relative humidity in 60 observation stations of Korean Meteorological Administration (KMA) have been used in this study. Food safety incidents data have been constructed by searching media reports following Park's method (2009) during the same period. According to the Park's method, 729 events were collected. To analyze its relations, food safety incidents data have been classified into chemical, biological, and physical hazards. Pearson product-moment correlation coefficients have been applied to analyze the relations. The correlation of food safety incidents has negative one with precipitation (-0.48), and positive one with minimum temperature(0.45). Precipitation has been correlated with biological and physical hazards more than chemical hazard. Temperatures (mean temperature, maximum temperature, and minimum temperature) have been correlated closely with chemical hazard than others. Food safety incidents data has been interblended with human behavior factor through decision-making processes in food manufacturing, processing, and consumption phases of "farm-totable" food processing. Act in the preventing damage will be obvious if the hazard were apparent. Therefore abnormal condition could be more dangerous than that of apparent extreme events because apparent events or extreme events become one of alarm over hazards. Therefore, human behavior should be considered as one of the important factors for analysis of food safety incidents. The result of this study can be used as a better case study for food safety researches related to climate change.