• Title/Summary/Keyword: minimum reflection

Search Result 118, Processing Time 0.024 seconds

The Study on the Reflection Coating Design Scheme in the Thin-Film Silicon Solar Cell (박막 실리콘 태양전지의 반사코팅 설계기술 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5172-5177
    • /
    • 2011
  • This paper presents a reflection coating design scheme in the thin-film silicon solar cell. The antireflection(high reflection) coating skill is needed in the front(back) panel of the thin-film solar cell to improve an efficiency of light absorbing. In the single structure a reflectivity is changed according to the thickness of coating for antireflection scheme and its minimum value can be obtained by controlling thickness of coating. In the symmetric multi layer structure low reflectivity can be obtained in the wide wavelength range. And we also find that high reflectivity can be obtained through multi layer structure, which has alternate layers of high and low material, for high reflection scheme in the back panel.

Validity of Empirical Formulas for Estimation of Reflection Coefficient of Waves Due to Perforated Wall (유공벽에 의한 파의 반사율 산정에 있어서 경험공식의 타당성)

  • Yoon, Sung Bum;Lee, Jong In;Han, Sang Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.633-639
    • /
    • 2006
  • The validity of the existing formulas for the estimation of reflection coefficient of waves due to perforated wall is investigated using the result of hydraulic experiments conducted with perforated walls of various thickness. The result shows that, when the wall is thick, the energy loss coefficient is reduced to 62% of the value evaluated using the existing formula for sharp-crested orifice. The result also shows that the length of inertia resistance increases linearly as the thickness of the wall increases. The width of chamber to achieve the minimum reflection of waves decreases as the length of inertia resistance increases. Thus, the result found in the present study can be usful for the design of perforated wall.

Enhancing seismic reflection signal (탄성파 반사 신호 향상)

  • Hien, D.H.;Jang, Seong-Hyung;Kim, Young-Wan;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.606-609
    • /
    • 2008
  • Deconvolution is one of the most used techniques for processing seismic reflection data. It is applied to improve temporal resolution by wavelet shaping and removal of short period reverberations. Several deconvolution algorithms such as predicted, spike, minimum entropy deconvolution and so on has been proposed to obtain such above purposes. Among of them, $\iota_1$ norm proposed by Taylor et al., (1979) and used to compared to minimum entropy deconvolution by Sacchi et al., (1994) has given some advantages on time computing and high efficiency. Theoritically, the deconvolution can be considered as inversion technique to invert the single seismic trace to the reflectivity, but it has not been successfully adopted due to noisy signals of the real data set and unknown source wavelet. After stacking, the seismic traces are moved to zero offset, thus each seismic traces now can be a single trace that is created by convolving the seismic source wavelet and reflectivity. In this paper, the fundamental of $\iota_1$ norm deconvolution method will be introduced. The method will be tested by synthetic data and applied to improve the stacked section of gas hydrate.

  • PDF

The Effect of Dispersion Relations on the Determination of Surface Acoustical Wave Velocity (주파수 의존성이 표면탄성파의 속도 결정에 미치는 영향)

  • Kwon, Sung-D.;Yoon, Seok-S.;Lee, Seung-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.340-346
    • /
    • 1999
  • Minimum reflection and backward radiation methods on liquid/solid interrace were used to determine the velocity dispersion relation of acoustical surface wave for brass and aluminum substrates and copper/stainless steel nickel/brass, and nickel/aluminum layered substrates. Dispersion data agreed to dispersion characteristics of a generalized Lamb wave. The difference between velocities determined by two phenomena was closely related to the dispersion characteristics. This correspondence was explained by considering the generation mechanism of surface waves and the concept of group velocity.

  • PDF

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

Estimation of Optimal Slit Length of Perforated Wall below Still Water Level: Single Chamber Condition (정수면 아래 최적 유공부 길이 산정 : 유공 1실 조건)

  • Kim, Young Taek;Lee, Jong In
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • In this study, the optimal slit length of perforated wall with single chamber below the still water level (SWL) is studied through the two dimensional test. The relationship between the reflection coefficient and the shape of structures such as chamber width(B) and slit length(S) are investigated by applying the various wave conditions. The random waves were used for the test by using Bretschneider-Mitsuyasu frequency spectrum. Minimum reflection coefficient is obtained at $B/L_s{\approx}0.15$ condition, this result is different from the regular wave condition. Also the minimum reflection coefficients are measured at $S/H_s{\approx}2.5$. This means that the optimal slit length below the still water level is 2.5 times of the incident wave height.

Borehole radar survey to explore limestone cavities for the construction of a highway bridge

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • During excavation work for the construction of a highway bridge in a limestone area in Korea, several cavities were found, and construction work was stopped temporarily. Cavities under the bridge piers might seriously threaten the safety of the planned bridge, because they could lead to excessive subsidence and differential settlement of the pier foundations. In order to establish a method for reinforcement of the pier foundations, borehole radar reflection and tomography surveys were carried out, to locate cavities under the planned pier locations and to determine their sizes where they exist. Since travel time data from the crosshole radar survey showed anisotropy, we applied an anisotropic tomography inversion algorithm assuming heterogeneous elliptic anisotropy, in order to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. The distribution of maximum velocity matched core logging results better than that of the minimum velocity. The degree of anisotropy, defined by the normalized difference between maximum and minimum velocities, was helpful in deciding whether an anomalous zone in a tomogram was a cavity or not. By careful examination of borehole radar reflection and tomography images, the spatial distributions of cavities were delineated, and most of them were interpreted as being filled with clay and/or water. All the interpretation results implied that two faults imaged clearly by a DC resistivity survey were among the most important factors controlling the groundwater movement in the survey area, and therefore were closely related to the development of cavities. The method of reinforcement of the pier foundations was based on the interpretation results, and the results were confirmed when construction work was resumed.

Measurement of Complex Sound Pressure Reflection Coefficient Using Standing Wave Tube (正常波管을 利用한 複素反射係數의 測定)

  • Suh, Sang-Joon;Jho, Moon-Jae;Kim, Youn-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 1989
  • The reflection coefficients of the sound absorbing materials are obtained from the standing wave ratio in the standin wave tube. This method is rather laborious to find the sound pressure maximum and minimum. We devised new method for determination of the complex reflection coefficients of the materials. The sound pressures and the phases are measured at least three points along the axis of the tube. The complex reflection coefficients are determined from the measured values by least square method. The measured results for the glasswool with thickness of 5cm and density of $50kg/m^3$ and the steel plate with thickness of 1.5cm are in good agreement with those of the conventional method. It is possible to measure the complex reflection coefficients at low frequencies with short standing wave tube and to interface with the personal computer which is very useful for the handling of amount of samples.

  • PDF

Removing Lighting Reflection under Dark and Rainy Environments based on Stereoscopic Vision (스테레오 영상 기반 야간 및 우천시 조명 반사 제거 기술)

  • Lee, Sang-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • The lighting reflection is a common problem in image analysis and causes the many difficulties to extract distinct features in related fields. Furthermore, the problem grows in the rainy night. In this paper, we aim to remove light reflection effects and reconstruct a road surface without lighting reflections in order to extract distinct features. The proposed method utilizes a 3D analysis based on a multiple geometry using captured images, with which we can combine each reflected areas; that is, we can remove lighting reflection effects and reconstruct the surface. At first, the regions of lighting sources and reflected surfaces are extracted by local maxima based on vertically projected intensity-histograms. After that, a fundamental matrix and homography matrix among multiple images are calculated by corresponding points in each image. Finally, we combine each surface by selecting minimum value among multiple images and replace it on a target image. The proposed method can reduces lighting reflection effects and the property on the surface is not lost. While the experimental results with collected data shows plausible performance comparing to the speed, reflection-overlapping areas which can not be reconstructed remain in the result. In order to solve this problem, a new reflection model needs to be constructed.

Force-Reflected Teleoperation of Grasper for Minimum Invasive Surgery (최소침습수술용 Grasper의 힘반영 원격제어)

  • Yoon, Byoung-Soung;Jang, Dae-Jin;Park, Tae-Wook;Yang, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1470-1475
    • /
    • 2003
  • The senses that a doctor can feel is limited in MIS(Minimal Invasive Surgery) which guarantees the fast recovery of the patient and minimal incision for going in and out of instruments through the tissue of the patient. In particular, the surgical robotic teleoperation system developed recently serves with only the information of eyesight and auditory sense. Therefore force-reflection is the most demanded element of the senses in manipulating surgical instruments. In this paper, we designed the Master system and the 2 D.O.F grasper for the robotic teleoperation system(Slave) that has two force sensors on the grasper. Particularly, we focused on serve to master's handle with the contact force between tissue and the grasper of Slave.

  • PDF