• Title/Summary/Keyword: minimum potential energy

Search Result 190, Processing Time 0.024 seconds

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

An analytical approach for buckling of functionally graded plates

  • Daouadji, Tahar Hassaine;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.141-169
    • /
    • 2016
  • In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Analysis of Stabilizing Process for the Unstable Truss Structures using a Topology of Member Connection (구성부재의 위상을 이용한 불안정 트러스 구조물의 안정화 이행과정)

  • 권택진;김진우;김재열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.251-258
    • /
    • 2001
  • Cable and membrane structures can be classified as a unstable structure in the view point of shape determination process. An unstable stucture at the initial state generally cannot take a role as the resistance for the external force. Therefore, there should be a stabilizing process to get the stable state of a structure and it is necessary to visualize the shape finding from unstable state to stable state. In this paper, a numerical method of stabilizing procedure for the link structures is presented. The structures are assumed to have rigid movements and thus only changing of the topology of member is considered during the analysis. The generalized inverse matrix and the principle of minimum potential energy are used in the process. Illustrative examples are presented and the results show good convergence.

  • PDF

A Study on the Application of the Radiant Floor Cooling System in Residential Building (주거 건물의 복사냉방시스템 적용에 관한 연구)

  • 임재한;여명석;김광우
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.73-82
    • /
    • 2004
  • The objective of this study is to demonstrate the potential of radiant cooling systems using Ondol as an alternative cooling system in residential buildings. For this purpose, computer simulation and model experiments have been performed for the system performance analysis regarding comfort, floor surface condensation, and supply water temperature. The results of this study is the following: In radiant floor cooling system, room air temperatures were maintained within the set temperature range of $\pm$1$^{\circ}C$ without any discomfort condition. And taking into account only the condensation occurrence, it was possible to achieve radiant floor cooling for a period of about 77% of the total cooling period in weather condition of Seoul. The minimum supply water temperature is about 15$^{\circ}C$, so renewable energy system such as ground heat exchange system can be used as an alternative in cooling source. Also, floor surface condensation can be prevented by integrating with the dehumidification system.

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang;Chen, Jian-kang
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.921-932
    • /
    • 2016
  • This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

Effect of delamination on vibration characteristic of smart laminated composite plate

  • Shankar, Ganesh;Varun, Jayant Prakash;Mahato, P.K.
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 2019
  • This study is concerned with a numerical analysis based on the finite element method to describe the effect of midplane delamination in smart laminated composite plate structures. A new finite element model for centrally located delamination and healthy section was developed and coded in Matlab. The transient analysis of delaminated composite plate with integrated Active Fiber Composite (AFC) was investigated in the present article. The formulation of the governing equation was based on the minimum total potential energy approach. The Newmark time integration technique was employed to solve the differential equations. A parametric study on the effects of boundary conditions and AFC patch location, in presence of delamination on the laminated plate were studied.

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.