• Title/Summary/Keyword: minimum potential energy

Search Result 190, Processing Time 0.026 seconds

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

A Property Analysis on Spatial Distribution of Sea Water Temperature Difference for Site Selection of Ocean Thermal Energy Conversion Plant (해양온도차 발전소의 입지선정을 위한 해수 온도차의 공간적 분포특성 분석)

  • 서영상;장이현;조명희
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.567-575
    • /
    • 1999
  • This study found potential ability to generate electric power using difference in water temperature between sea surface water and deep water in the East Sea which includes the East Sea Proper Water with the temperature less than 1$^{\circ}C$ throughout a year without seasonal variation. To quantify the difference in water temperature between sea surface water and deep water in the East Sea. We computed the annual mean ($^{\circ}C$), the annual amplitude ($^{\circ}C$), the annual phase (degree) and the duration time which showed more than 15$^{\circ}C$ temperature difference from the water temperature data using Harmonic analysis during 1961~1997. The best place for generating electric power in the East Sea seems to be the eastward ocean areas (36$^{\circ}$ 05'N, 129$^{\circ}$ 48'E~36$^{\circ}$ 05'N, 130$^{\circ}$ 00E'E) from Pohang city. The annual mean of the difference in water temperature between sea surface water and 500 m depth was 24$^{\circ}$C at the place to generate electric power in August according to the data of 1961~1997. the maximum duration periods with more than 15$^{\circ}C$ temperature difference were 215 days (5/5-12/10) a year in the place mentioned electricity with a stable plan. In the East Sea coastal areas of the Korean peninsula, the average minimum depth to reach the East Sea Proper Water from surface water is 300 m and fluctuates between 250 m and 350 m throughout a year. Further studies could be needed for the utilization of cold water, such as the East Sea Proper Water for energy conversion.

  • PDF

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Measurement of Mechanical Properties of a Thermally Evaporated Gold Film Using Blister Test (블리스터 시험법을 이용한 열증착 금박막의 기계적 성질 측정)

  • Moon, Ho-Jeong;Ham, Soon-Sik;Earmme, Yun-Young;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.882-890
    • /
    • 1996
  • Mechanical properties, including Young's modulus, residual stress and rupture strength, of a thermally evaporated gold film have been measured form a blister test. In a theoretical study, the priniple of minimum potential energy and that of virtual work have been applied to the pressurized circular membrane problem, and load-deflection relations have been derived for typical membrane deflection mode of spheroidal shape. In an experimental study, circular gold membranes of 4800 A-thickness and 3.5mm diameter were fabricated by the silicon electropolishing technique. Mecahnical properties of the thin gold films were deduced from the load-deflection curves obtained by the blister test, Young's moduli, obtianed from blister test, have been in the range of 45-70 GPa, while those of bulk gold have been in the range of 78-80 GPa. Residual stresses in the evaporated gold films have been measured as 28-110MPa in tension, The rupture strength of the gold film has turned out to be almost equal to that of dental gold alloy (310-380MPa). It has been demonstrated that the present specimen fabrication method and blister test apparatus have been effective for simultaneous measurement of Young's modulus, residual stress and repture strength of thin solid films. Especially, the electropolishing technique employed here has provided a simple and practical way to fabricate thin membranes in a circular or an arbitrary shape, which could not be obtained by the conventional anisotropic silicon mecromachining technique.

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

Statistical estimation of crop yields for the Midwestern United States using satellite images, climate datasets, and soil property maps

  • Kim, Nari;Cho, Jaeil;Hong, Sungwook;Ha, Kyung-Ja;Shibasaki, Ryosuke;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.383-401
    • /
    • 2016
  • In this paper, we described the statistical modeling of crop yields using satellite images, climatic datasets, soil property maps, and fertilizer data for the Midwestern United States during 2001-2012. Satellite images were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic datasets were provided by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group. Soil property maps were derived from the Harmonized World Soil Database (HWSD). Our multivariate regression models produced quite good prediction accuracies, with differences of approximately 8-15% from the governmental statistics of corn and soybean yields. The unfavorable conditions of climate and vegetation in 2012 could have resulted in a decrease in yields according to the regression models, but the actual yields were greater than predicted. It can be interpreted that factors other than climate, vegetation, soil, and fertilizer may be involved in the negative biases. Also, we found that soybean yield was more affected by minimum temperature conditions while corn yield was more associated with photosynthetic activities. These two crops can have different potential impacts regarding climate change, and it is important to quantify the degree of the crop sensitivities to climatic variations to help adaptation by humans. Considering the yield decreases during the drought event, we can assume that climatic effect may be stronger than human adaptive capacity. Thus, further studies are demanded particularly by enhancing the data regarding human activities such as tillage, fertilization, irrigation, and comprehensive agricultural technologies.

Structures and N→Si Bond Characters of 1-Fluorosilatrane and the Silatranyl Cation

  • Lee, Hyo-Sug;Bae, Cheol-Beom;Do, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.215-220
    • /
    • 2002
  • The structures of 1-fluorosilatrane and the silatranyl cation were calculated by Hartree-Fock (HF), Mofller-Plesset second order (MP2), and various density functional theory (DFT) methods using many different basis sets, demonstrating that the Si-N bonds in two species are quite different. The N${\rightarrow}$Si bond distance of 1-fluorosilatrane from the hybrid DFT calculations $({\sim}2.32{\AA})$ using the Perdew-Wang correlation functional agrees with the gas phase experimental value $(2.324{\AA})$, while other functionals yield larger distances. The MP2 bond distance (2.287${\AA}$ with 6-311$G^{\ast}$) is shorter, and the HF one (2.544 ${\AA}$ with 6-311$G^{\ast}$) larger than those of DFT calculations. The MP2 bond distance is in good agreement with experiment indicating that the electron correlations are crucial for the correct description of the N${\rightarrow}$Si interaction. The silatranyl cation is a stable local minimum on the potential energy surface in all methods employed suggesting that the cation could be a reaction intermediate. The Si-N bond length for the cation is about 1.87 ${\AA}$ for all calculations tested implying that the Si-N bond is mainly conventional. Bonding characteristics of the Si-N bond in two species derived from the natural bond orbital analysis support the above argument based on calculated bond lengths.

The Clinical Significance of Vein Graft in Free-Flap Transfer (유리피판 이식에서 정맥이식의 임상적 의의)

  • Lee, Kwang-Suk;Woo, Kyung-Jo;Jung, Dae-Chul;Jung, Jae-Hyo
    • Archives of Reconstructive Microsurgery
    • /
    • v.5 no.1
    • /
    • pp.70-79
    • /
    • 1996
  • From January 1980 to May 1995, ninety-six patients had been treated by free-flap transfer for the soft tissue defects of the extremities. Ninety-eight cases of free-tissue transfer were reviewed to evaluate the clinical reliability in terms of survival and quality of long-time function after reconstructive surgery. Among these 98 cases(27 cases in latissimus dorsi myocutaneous flap, 25 in dorsalis pedis flap, 20 in forearm fasciocutaneous flap, 9 in groin flap, 7 in gracilis myocutaneous flap, 6 in 1st web space flap of foot and 4 cases in tensor fascia lata flap), 92 cases of then were survived. 7 cases were performed with vein grafts. We ananalyzed the reconstruction of the extremities on 98 cases with the soft tissue defects which had been reconstructed free-flap transfer and followed for minimum 1 year period at Korea University Hospital. 1. 92 cases(93.9%) of the total 98 cases were successful and can be obtained the excellent results in soft tissue free-flap transfer. 2. While there were no clinically significant differences in survival rate of flaps transferred from different potential flap donor sites,3 cases of 9 groin flaps were showed higher failure rate due to the complications such as arterial thrombosis, infection and anatomical variation of vessels. 3. Postoperative thrombectomy was performed in 30 cases to be occured in the arterial and venous thrombosis. The revision was failed in 2 cases due to persistent arterial thrombosis and infection, then treated with skin graft. 4. Vein graft was frequently required in severely compromised-soft tissue defects resulted from high-energy trauma. The vein graft was not stitistically significant on the frequency of flap failure rate(P<0.04). 5. Meticulous monitoring, careful planning, early revision and technical considerations will provide for a high clinical success of the free-flap transfer.

  • PDF

The Static Nonlinear Analysis of the Offshore Pipeline (해저(海底)파이프라인의 정적(靜的) 비선형(非線形) 해석(解析))

  • Park, Young Suk;Chung, Tae Ju;Cho, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 1990
  • The static nonlinear analysis of offshore pipeline is carried out by the finite element method. The governing equilibrium equation are derived by the principle of minimum potential energy and the modified Newton-Raphson procedure is used to solve the system of nonlinear algebraic equation. Geometrically nonlinear beam elements and spring elements are utilized to model the pipeline, stinger, pipe supports and seabed simultaneously. The beam element developed can be used to model redundant structures. It provides for both the torsional deformation and elongation of pipeline, and permits the use of different physical properties in each principal direction. The validity of this method is investigated by comparing the results with these obtained by other methods.

  • PDF