• Title/Summary/Keyword: minimum inhibitory (MIC)and minimun bactericidal (MBC) concentration

Search Result 2, Processing Time 0.018 seconds

Anticariogenic activity of acanthoic acid isolated from Acanthopanax koreanum $N_{AKAI}$ against oral pathogens (섬오가피로부터 분리된 acanthoic acid의 항치아우식효과)

  • Kim, Hong-Jun;Jeong, Seung-Il;Lee, Hwa-Jung;Ju, Young-Sung
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.1
    • /
    • pp.69-75
    • /
    • 2006
  • This research was aimed to search for natural antimicrobial agents that are sefe for humans and specific for oral pathogens. Acanthoic was isolated from the chloroform fraction of methanol extract of Acanthopanax koreanum $N_{AKAI}$ and its structure were elucidated by 13-NMR, 1H-NNR and ESIMS. Antibacterial activity of acanthoic acid was investigated by the minimum inhibitory (MIC) and minimun bactericidal (MBC) concentration. MIC/MBC of acanthoic acid against Streptococcus mutans $N_{AKAI}$ causing dental caries was determined to be $2/4\;{\mu}g/mL$, which was much lower than these of other natural antimicrobial agents such as $8/16\;{\mu}g/mL$ of sangurinarine and $250/500\;{\mu}/mL$ of green tea extract, $500/600\;{\mu}g/mL$ of thymol and borneol. Acanthoic and significantly inhibited the growth of other cariogenic bacteria such as Streptococcus sobrinus $N_{AKAI}$ and Streptococcus sanguis $N_{AKAI}$, and Streptococcus gordonii $N_{AKAI}$ in the MIC range of $4{\sim}32\;{\mu}g/mL$. My finding suggests that acanthoic acid could be employed as a potential antibacterial agent for preventing dental caries.

  • PDF

Antimicrobial activity of honeybee venom against fish pathogenic bacteria (국내산 봉독의 어류병원성 세균에 대한 항균활성)

  • Han, Sang-Mi;Lee, Kyung-Gill;Park, Kwan-Kyu
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • In this study, we examined antimicrobial activity of the bee venom isolated from honeybee (Apis mellifera L.) against fish pathogenic bacteria, Edwardsiella tarda, Vibrio ichthyoenteri and Streptococcus iniae of cultured olive flounder, Paralichthys olvaceus. The bee venom exhibited significant antimicrobial activity against the both Gram-negative bacteria, E. tarda and V. ichthyoenteri and Gram-positive bacteria, S. iniae. Minimum inhibitory concentration (MIC) and minimun bactericidal concentration (MBC) of the bee venom were 17.6 ${\mu}g$/ml 34.6 ${\mu}g$/ml against E. tarda., and 1.76 ${\mu}g$/ml, 6.8 ${\mu}g$/ml against V. ichthyoenteri, respectively. MIC and MBC of the bee venom were 3.49 ${\mu}g$/ml, 11 ${\mu}g$/ml, respectively against S. iniae. The postantibiotic effect (PAE) of the bee venom was 5 hr, 6 hr, and 7 hr against E. tarda, V ichthyoenteri, and S. iniae, respectively. In addition, its antimicrobial activity was stable under various pH conditions. According to these results, the bee venom showed the excellent antimicrobial activity against the tested pathogenic bacteria.