• Title/Summary/Keyword: minimum energy-per-bit

Search Result 4, Processing Time 0.023 seconds

Minimum Energy-per-Bit Wireless Multi-Hop Networks with Spatial Reuse

  • Bae, Chang-Hun;Stark, Wayne E.
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, a tradeoff between the total energy consumption-per-bit and the end-to-end rate under spatial reuse in wireless multi-hop network is developed and analyzed. The end-to-end rate of the network is the number of information bits transmitted (end-to-end) per channel use by any node in the network that is forwarding the data. In order to increase the bandwidth efficiency, spatial reuse is considered whereby simultaneous relay transmissions are allowed provided there is a minimum separation between such transmitters. The total energy consumption-per-bit includes the energy transmitted and the energy consumed by the receiver to process (demodulate and decoder) the received signal. The total energy consumption-per-bit is normalized by the distance between a source-destination pair in order to be consistent with a direct (single-hop) communication network. Lower bounds on this energy-bandwidth tradeoff are analyzed using convex optimization methods. For a given location of relays, it is shown that the total energy consumption-per-bit is minimized by optimally selecting the end-to-end rate. It is also demonstrated that spatial reuse can improve the bandwidth efficiency for a given total energy consumption-per-bit. However, at the rate that minimizes the total energy consumption-per-bit, spatial reuse does not provide lower energy consumption-per-bit compared to the case without spatial reuse. This is because spatial reuse requires more receiver energy consumption at a given end-to-end rate. Such degraded energy efficiency can be compensated by varying the minimum separation of hops between simultaneous transmitters. In the case of equi-spaced relays, analytical results for the energy-bandwidth tradeoff are provided and it is shown that the minimum energy consumption-per-bit decreases linearly with the end-to-end distance.

Minimum Energy Per Bit by Power Model in the Wireless Transceiver System (무선 통신 시스템의 전력 모델을 이용한 비트당 최소 에너지)

  • Choi, Jae-Hoon;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1078-1085
    • /
    • 2011
  • In this paper, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth. A existing power model is mathematical model to express power consumption of each device. In this paper, we have to investigate the system level energy model for the RF front-end of a wireless transceiver. Also, the effects of the signal bandwidth, PAR, date rate, modulation level, transmission distance, specific attenuation of frequency band, and the signal center frequency on the RF front-end energy consumption and system capacity are considered. Eventually, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth so that we simulate the minimum energy per bit in the several Gbps data rate using Shannon capacity theory.

Symbol Synchronization Technique using Bit Decision Window for Non-Coherent IR-UWB Systems (Bit Decision 윈도우를 이용한 Noncoherent IR-UWB 수신기의 심벌 동기에 관한 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • In this paper, we propose a technique of a practical symbol acquisition and tracking using a low complex ADC and simple digital circuits for noncoherent asynchronous impulse-radio-based Ultra Wideband (IR-UWB) receiver based on energy detection. Compared to previous approaches of detecting an exact acquisition time that require much hardware resource, the proposed technique is to detect the target symbol by finding the symbol acquisition interval per symbol with a target symbo, thus the complexity of the complete signal processing and power consumption by ADC are reduced. To do this, we define the bit decision window (BDW) and analyze the relation between SNR, hardware resource, size of BDW and BER(Bit Error Rate). Using the results, the optimum BDW size for the minimum BER with limited hardware resource is selected. The proposed synchronization technique is verified with an aid of a simulator programmed by considering practical impulse channels.

Performance Analysis of Photovoltaic System for Greenhouse (태양광 발전시스템의 발전 성능 분석)

  • Kwon, Sun-Ju;Min, Young-Bong;Choi, Jin-Sik;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.143-152
    • /
    • 2012
  • This study was performed to reduce the operating cost of a greenhouse by securing electric energy required for greenhouse operation. Therefore, it experimentally reviewed the performance analysis of photovoltaic system in terms of maximum amount of generated electric power based on the amount of horizontal solar radiation during daytime. That is to say, the maximum solar radiation at 300, 400, 500, 600, 700, 800 and 900 W. $m^{-2}$, respectively. The amount of momentary electric power of the photovoltaic system at any was about 970 W and we found that the momentary efficiency of the photovoltaic system that was used for this experiment was 97%. In the case of this system, we found that electric power will be generated when amount of horizontal solar radiation is more than 200 W. $m^{-2}$, at minimum. If the amount of horizontal solar radiation is increased, the maximum power generation is also increased. At that time, the maximum efficiencies were 30, 78, 86 and 90%, respectively. However, when the amount of insolation was about 800 W. $m^{-2}$, the maximum power generation tended to be lower than 700 W. $m^{-2}$. The efficiency which caused the maximum electric power was decreased to less than 97% of the momentary generated electric power. When the total amounts of horizontal solar radiation per day were 3.24, 8.10, 10, 90, 12.70, 14.33, 19.53 and $21.48MJ{\cdot}m^{-2}$ respectively, the total amounts of power energy were 0.03, 0.40, 3.60, 4.37, 4.71, 4.70 and 4.91 kWh. And it represented that the total amounts of power energy were either decreased or increased a bit on the border between some solar radiations. The temperature at the back of the array tended to be higher than the temperature at the front but it demonstrated an increased when the amount of solar radiation increased. In the case of this system, the performance of the module in terms of degradation has not been shown yet.