• Title/Summary/Keyword: minimum cost design

Search Result 410, Processing Time 0.025 seconds

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Genetic Algorithms for Optimal Augmentation of Water Distribution Networks (유전자 알고리즘을 이용한 배수관망의 최적 확장 설계)

  • Lee, Seung-Cheol;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • A methodology is developed for designing the minimum-cost water distribution network. The method is based on network simulations and an optimization scheme using genetic algorithms. Being a stochastic optimization scheme, genetic algorithms have advantages over the conventional search algorithms in solving network problems known for their nonlinearities and herculean computational costs. While existing methods focus on the design of either entirely new or parallel augmentation of network systems, the proposed method can be applied to problems having both new branches of tree-type and paralle augmentation in loops. The applicability of the method was shown through a case study for Baekryeon water supply system. The optimized design resulted in the maximum 5.37% savings compared to the conventional design without optimization, while meeting the hydraulic constraints.

  • PDF

Optimum design of laterally-supported castellated beams using CBO algorithm

  • Kaveh, A.;Shokohi, F.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.305-324
    • /
    • 2015
  • In this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. These types of open-web beams have found widespread use, primarily in buildings, because of great savings in materials and construction costs. Hence, the minimum cost is taken as the design objective function and the Colliding Bodies Optimization (CBO) method is utilized for obtaining the solution of the design problem. The design methods used in this study are consistent with BS5950 Part 1 and Part 3, and Euro Code 3. A number of design examples are considered to optimize by CBO algorithm. Comparison of the optimal solution of the CBO algorithm with those of the Enhanced Charged System Search (ECSS) method demonstrate the capability of CBO in solving the present type of design problem. It is also observed that optimization results obtained by the CBO algorithm for three design examples have less cost in comparison to the results of the ECSS algorithm. From the results obtained in this paper, it can be concluded that the use of beam with hexagonal opening requires smaller amount of steel material and it is superior to the cellular beam from the cost point of view.

Minimum Weight Design for Bridge Girder using Approximation based Optimization Method

  • ;Yearn-Tzuo(Andrew);Gar
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.31-39
    • /
    • 1995
  • Weight minimization for the steel bridge girders using an approximation based optimization technique is presented. To accomplish this, an optimization oriented finite element program is used to achieve continuous weight reduction until the optimum is reached. To reduce computational cost, approximation techniques are adopted during the optimization process. Constraint deletion as well as intermediate design variables and responses are also used for higher qualitv of approximations and for a better convergence rate. Both the reliability and the effectiveness of the underlying optimization method are reviewed.

  • PDF

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Optimal Design of Municipal Water Distribution System (관수로 시스템의 최적설계)

  • Ahn, Tae Jin;Park, Jung Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1375-1383
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operational constraints. Since the municipal water distribution system problem is nonconvex with multiple local minima, classical optimization methods find a local optimum. An outer flow search - inner optimization procedure is proposed for choosing a better local minimum for the water distribution systems. The pipe network is judiciously subjected to the outer search scheme which chooses alternative flow configurations to find an optimal flow division among pipes. Because the problem is nonconvex, a global search scheme called Stochastic Probing method is employed to permit a local optimum seeking method to migrate among various local minima. A local minimizer is employed for the design of least cost diameters for pipes in the network. The algorithm can also be employed for optimal design of parallel expansion of existing networks. In this paper one municipal water distribution system is considered. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

  • PDF

Study on Optimum Design of Steel Plane Frame By Using Gradient Projection Method (Gradient Projection법을 이용한 철골평면구조물의 최적설계연구)

  • LEE HAN-SEON;HONG SUNG-MOK
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.38-45
    • /
    • 1994
  • The general conceptual constitution of structural optimization is formulated. The algorithm using the gradient projection method and design sensitivity analysis is discussed. Examples of minimum-weight design for six-story steel plane frame are taken to illustrate the application of this algorithm. The advantages of this algorithm such as marginal cost and design sensitivity analysis as well as system analysis are explained.

  • PDF

Heuristic Algorithm for the Ring-type Network Design Problem (Ring형 Network 설계문제의 휴리스틱 알고리즘)

  • 김길동;이경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.83-90
    • /
    • 1992
  • This paper aims at the problem that design the network of Rig-star type with the minimum cost, which the Ring is composed of the selected nodes(concentrators) among the several candidate nodes on the network and other nodes(terminals) is connected to the Ring by star subnetwork. Especially, we consider the terminal reliability in network design problem. We develop the heuristic algorithm for network design problem to obtain the near optimal(best) solution for problem. We use an add-heuristic method and 2-exchange method in developing the heuristic algorithm.

  • PDF

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

DEVELOPMENT OF A COMPUTER PROGRAM FOR AN ANALYSIS OF THE LOGISTICS AND TRANSPORTATION COSTS OF THE PWR SPENT FUELS IN KOREA

  • Cha, Jeong-Hun;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It is expected that a substantial amount of spent fuels will be transported from the four nuclear power plant (NPP) sites in Korea to a hypothetical centralized interim storage facility or a final repository in the near future. The cost for the transportation is proportional to the amount of spent fuels. In this paper, a cost estimation program is developed based on the conceptual design of a transportation system and a logistics analysis. Using the developed computer program, named as CASK, the minimum capacity of a centralized interim storage facility (CISF) and the transportation cost for PWR spent fuels are calculated. The PWR spent fuels are transported from 4 NPP sites to a final repository (FR) via the CISF. Since NPP sites and the CISF are located along the coast, a sea-transportation is considered and a road-transportation is considered between the CISF and the FR. The result shows that the minimum capacity of the interim storage facility is 15,000 MTU.