• Title/Summary/Keyword: minimum cost design

Search Result 411, Processing Time 0.026 seconds

3D Earthwork BIM Design Process for a Road Project

  • Raza, Hassnain;Park, Sang-Il;Lee, Seung Soo;Tanoli, Waqas Arshad;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2017
  • Building Information modeling is playing an important role in transforming the construction industry. It helped the industry with better visualization, minimum design errors, and excellent planning of the construction activities. Time and cost saving can be effectively achieved by using BIM for any construction project. It improves information exchange between all the project stakeholders. However, the development of earthwork 3D BIM is still underway and has not been fully implemented yet. This paper presents the study of a complete process for Earthwork BIM design using Autodesk Civil 3D. A real site road construction project is used as a case study to explain the process of earthwork modeling, starting from laser scanning to 3D model. Quantity take off calculation is very important part of any road construction project so during this study earthwork volume from two 3D earthwork model is calculated. The results obtained through this study will be the basis for future work which has been concluded in this paper.

Novel Mobile Satellite Communication Antenna Design Based on Shaped-Reflector (새로운 성형 반사판 기반의 이동 위성 통신 안테나 설계)

  • Jung, Young-Bae;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.826-831
    • /
    • 2008
  • This paper presents hybrid antenna(HA) design based on shaped reflector for mobile satellite communication. HA is composed of a shaped reflector and a feeder having $1{\times}8$ linear phased array, and reflector shaping method is applied for the performance optimization with minimum aperture size. And, in the feeder design, HA has another merit to minimize the manufacturing cost by optimizing the number of element. Proposed HA is designed at Ka-band and can electrically control a beam pattern within ${\pm}3^{\circ}$ in the basic angle of $+45^{\circ}$ in elevation. This antenna is designed to meet ITU-R S.465-5 for beam pattern including side-lobe level.

Two-stage layout-size optimization method for prow stiffeners

  • Liu, Zhijun;Cho, Shingo;Takezawa, Akihiro;Zhang, Xiaopeng;Kitamura, Mitsuru
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls.

A design study of a 4.7 T 85 mm low temperature superconductor magnet for a nuclear magnetic resonance spectrometer

  • Bae, Ryunjun;Lee, Jung Tae;Park, Jeonghwan;Choi, Kibum;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.24-29
    • /
    • 2022
  • One of the recent proposals with nuclear magnetic resonance (NMR) is a multi-bore NMR which consists of array of magnets which could present possibilities to quickly cope with pandemic virus by multiple inspection of virus samples. Low temperature superconductor (LTS) can be a candidate for mass production of the magnet due to its low price in fabrication as well as operation by applying the helium zero boil-off technology. However, training feature of LTS magnet still hinders the low cost operation due to multiple boil-offs during premature quenches. Thus in this paper, LTS magnet with low mechanical stress is designed targeting the "training-free" LTS magnet for mass production of magnet array for multi-bore NMR. A thorough process of an LTS magnet design is conducted, including the analyses as the followings: electromagnetics, mechanical stress, cryogenics, stability, and protection. The magnet specification was set to 4.7 T in a winding bore of 85 mm, corresponding to the MR frequency of 200 MHz. The stress level is tolerable with respect to the wire yield strength and epoxy crack where mechanical disturbance is less than the minimum quench energy.

Achromatic and Athermal Design of a Mobile-phone Camera Lens by Redistributing Optical First-order Quantities

  • Tae-Sik Ryu;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • This paper presents a new method for redistributing effectively the first orders of each lens element to achromatize and athermalize an optical system, by introducing a novel method for adjusting the slope of an achromatic and athermal line. This line is specified by connecting the housing, equivalent single lens, and aberration-corrected point on a glass map composed of available plastic and glass materials for molding. Thus, if a specific lens is replaced with the material characterized by the chromatic and thermal powers of an aberration-corrected point, we obtain an achromatic and athermal system. First, we identify two materials that yield the minimum and maximum slopes of the line from a housing coordinate, which specifies the slope range of the line spanning the available materials on a glass map. Next, redistributing the optical first orders (optical powers and paraxial ray heights) of lens elements by moving the achromatic and athermal line into the available slope range of materials yields a good achromatic and athermal design. Applying this concept to design a mobile-phone camera lens, we efficiently obtain an achromatic and athermal system with cost-effective material selection, over the specified temperature and waveband ranges.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation

  • Ompal, Ompal;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2444-2452
    • /
    • 2022
  • The field-programmable gate array (FPGA) is gaining popularity in industrial automation such as nuclear power plant instrumentation and control (I&C) systems due to the benefits of having non-existence of operating system, minimum software errors, and minimum common reason failures. Separate functions can be processed individually and in parallel on the same integrated circuit using FPGAs in comparison to the conventional microprocessor-based systems used in any plant operations. The use of FPGAs offers the potential to minimize complexity and the accompanying difficulty of securing regulatory approval, as well as provide superior protection against obsolescence. Wireless sensor networks (WSNs) are a new technology for acquiring and processing plant data wirelessly in which sensor nodes are configured for real-time signal processing, data acquisition, and monitoring. ZigBee (IEEE 802.15.4) is an open worldwide standard for minimum power, low-cost machine-to-machine (M2M), and internet of things (IoT) enabled wireless network communication. It is always a challenge to follow the specific topology when different Zigbee nodes are placed in a large network such as a plant. The research article focuses on the hardware chip design of different topological structures supported by ZigBee that can be used for monitoring and controlling the different operations of the plant and evaluates the performance in Vitex-5 FPGA hardware. The research work presents a strategy for configuring FPGA with ZigBee sensor nodes when communicating in a large area such as an industrial plant for real-time monitoring.

A Study on Integrated Logistic Support (통합병참지원에 관한 연구)

  • 나명환;김종걸;이낙영;권영일;홍연웅;전영록
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.277-278
    • /
    • 2001
  • The successful operation of a product In service depends upon the effective provision of logistic support in order to achieve and maintain the required levels of performance and customer satisfaction. Logistic support encompasses the activities and facilities required to maintain a product (hardware and software) in service. Logistic support covers maintenance, manpower and personnel, training, spares, technical documentation and packaging handling, storage and transportation and support facilities.The cost of logistic support is often a major contributor to the Life Cycle Cost (LCC) of a product and increasingly customers are making purchase decisions based on lifecycle cost rather than initial purchase price alone. Logistic support considerations can therefore have a major impact on product sales by ensuring that the product can be easily maintained at a reasonable cost and that all the necessary facilities have been provided to fully support the product in the field so that it meets the required availability. Quantification of support costs allows the manufacturer to estimate the support cost elements and evaluate possible warranty costs. This reduces risk and allows support costs to be set at competitive rates.Integrated Logistic Support (ILS) is a management method by which all the logistic support services required by a customer can be brought together in a structured way and In harmony with a product. In essence the application of ILS:- causes logistic support considerations to be integrated into product design;- develops logistic support arrangements that are consistently related to the design and to each other;- provides the necessary logistic support at the beginning and during customer use at optimum cost.The method by which ILS achieves much of the above is through the application of Logistic Support Analysis (LSA). This is a series of support analysis tasks that are performed throughout the design process in order to ensure that the product can be supported efficiently In accordance with the requirements of the customer.The successful application of ILS will result in a number of customer and supplier benefits. These should include some or all of the following:- greater product uptime;- fewer product modifications due to supportability deficiencies and hence less supplier rework;- better adherence to production schedules in process plants through reduced maintenance, better support;- lower supplier product costs;- Bower customer support costs;- better visibility of support costs;- reduced product LCC;- a better and more saleable product;- Improved safety;- increased overall customer satisfaction;- increased product purchases;- potential for purchase or upgrade of the product sooner through customer savings on support of current product.ILS should be an integral part of the total management process with an on-going improvement activity using monitoring of achieved performance to tailor existing support and influence future design activities. For many years, ILS was predominantly applied to military procurement, primarily using standards generated by the US Government Department of Defense (DoD). The military standards refer to specialized government infrastructures and are too complex for commercial application. The methods and benefits of ILS, however, have potential for much wider application in commercial and civilian use. The concept of ILS is simple and depends on a structured procedure that assures that logistic aspects are fully considered throughout the design and development phases of a product, in close cooperation with the designers. The ability to effectively support the product is given equal weight to performance and is fully considered in relation to its cost.The application of ILS provides improvements in availability, maintenance support and longterm 3ogistic cost savings. Logistic costs are significant through the life of a system and can often amount to many times the initial purchase cost of the system.This study provides guidance on the minimum activities necessary to Implement effective ILS for a wide range of commercial suppliers. The guide supplements IEC60106-4, Guide on maintainability of equipment Part 4: Section Eight maintenance and maintenance support planning, which emphasizes the maintenance aspects of the support requirements and refers to other existing standards where appropriate. The use of Reliability and Maintainability studies is also mentioned in this study, as R&M is an important interface area to ILS.

  • PDF

An Experimental Study on the Seismic Behavior of Box Type Concrete-Filled Steel Piers (박스형 강합성 교각의 내진 성능 평가를 위한 실험적 연구)

  • 서진환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.381-388
    • /
    • 2000
  • The steel piers and the concrete-filled steel piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as the alternatives to the RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. In this paper, a steel pier and 4 box type concrete-filled steel piers were tested with the quasi-static cyclic loading to estimate the ductility and the strength. Additional devices such as base rib, turn-buckle, and anchor bolted added at the to increase the ductility with minimum additional cost. The result showed that the concrete filled-in steel piers had higher energy absorbtion and strength than steel piers had, but also showed that slight overlooking in the design and fabrication could lead to the abrupt fracture just after small local buckling at the bottom.

  • PDF

Hybrid SNR-Adaptive Multiuser Detectors for SDMA-OFDM Systems

  • Yesilyurt, Ugur;Ertug, Ozgur
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.218-226
    • /
    • 2018
  • Multiuser detection (MUD) and channel estimation techniques in space-division multiple-access aided orthogonal frequency-division multiplexing systems recently has received intensive interest in receiver design technologies. The maximum likelihood (ML) MUD that provides optimal performance has the cost of a dramatically increased computational complexity. The minimum mean-squared error (MMSE) MUD exhibits poor performance, although it achieves lower computational complexity. With almost the same complexity, an MMSE with successive interference cancellation (SIC) scheme achieves a better bit error rate performance than a linear MMSE multiuser detector. In this paper, hybrid ML-MMSE with SIC adaptive multiuser detection based on the joint channel estimation method is suggested for signal detection. The simulation results show that the proposed method achieves good performance close to the optimal ML performance at low SNR values and a low computational complexity at high SNR values.