• Title/Summary/Keyword: minimum cost design

Search Result 410, Processing Time 0.033 seconds

A Study on the Basic-Design of Inside-Sea Fishing Vessel by Economic Optimization Technique (경제성 최적화 기법에 의한 연근해 어선설계에 관한 연구)

  • 박제웅
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.287-295
    • /
    • 1995
  • fishing boat is a specialized vessel which is intended to perform certain well defined tasks. Its size, deck-layout, carrying capacity and equipment are all related to its function in carrying out its planned operations. Therefore the process of fishing boat design is inherently combined with optimization of the design variables called the economic optimization criteria. Optimization then is a process in which minimum value of weight or cost is established through evaluation of consecutive designs in which one or more design parameters are varied. This paper is to study the basic-design of Stow-net fishing vessel in the Mok-Po region. The main task is developed the preliminary design model of engineering economic system in order to use optimization techniques from operation research the design problem needs to be expressed in terms of objective function and numerous constrains like : speed, fish hold capacity, fishing range, displacement and weight, ratio of main dimensions, etc. The objective function represents the criterion which is NPV such as the ratio of revene/cost. When using computers of limited capacity like P/C, the developed basic-design model of the economic optimization procedure must be simplified to V, Cb, L/B, Dv, Db and less than 15 constraint equations. The main conclusions of this study have attempted to show that economic considerations are essential in Stow-net fishing vessel basic design and operations, and that techno-economic evaluation is an important tool for the design of Stow-net fishing vessel in 69ton and 79ton.

  • PDF

High Resolution Linear Graphs : Graphical Aids for Designing Off-Line Process Control)

  • Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-88
    • /
    • 2001
  • Designing high quality products and processes at a low cost is central technological and economic challenge to the engineer. The combination of engineering concepts and statistical implementations offered by Taguchi\`s off-line design technique has proven t be invaluable. By examining some deficiencies in designs from the Taguchi\`s highly fractional, orthogonal main effect plan based on orthogonal arrays, alternative method is proposed. The maximum resolution or the minimum aberration criterion is commonly used for selecting 2$^{n-m}$ fractional designs. We present new high resolution (low aberration) linear graphs to simplify the complexity of selecting designs with desirable statistical properties. The new linear graphs approach shows a substantial improvement over Taguchi\`s linear graphs and other related graphical methods for planning experiment. The new set of linear graphs will allow the experimenter to maintain the simple approach suggested by Taguchi while obtaining the best statistical properties of the resulting design such as minimum aberration as a by-product without dependency on complicated computational algorithm or additional statistical training.g.

  • PDF

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.

A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks (WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법)

  • Chung, Ji-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.

Dredging and Reclamation Technology for Prevention of Water Pollution (수질오염 방지를 위한 준설매립공법에 관한 연구)

  • 신은철;오영인;이학주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.41-45
    • /
    • 2000
  • Geotube is made of permeable but soil-tight geotextile, hydraulically filled with soil include dredged sand and mud, which has been successfully applied in hydraulic and coastal engineering projects. Ceotube method is getting popular and being used a lot in many countries of the world because of the simplicity of the placement and construction, cost effectiveness and minimum impact on the environment, and enable to store & isolate contaminated materials as obtained by harbor dredging. Laboratory tests and field construction were performed to determine the design methodology and construction procedures. From the results of laboratory and field construction, the retention ratio of solid particle is a minimum 86%. The minimum permeability and the tensile strength of geotextile are $\alpha$ x 10$^{-4}$ cm/sec and 20t/m, respectively Also, based on the environmental test results, it can be concluded that this method does meet the Korean EPA standards.

  • PDF

Optimal Terminal Interconnection Reconstruction along with Terminal Transition in Randomly Divided Planes

  • Youn, Jiwon;Hwang, Byungyeon
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.160-165
    • /
    • 2022
  • This paper proposes an efficient method of reconstructing interconnections when the terminals of each plane change in real-time situations where randomly divided planes are interconnected. To connect all terminals when the terminals of each plane are changed, we usually reconstruct the interconnections between all terminals. This ensures a minimum connection length, but it takes considerable time to reconstruct the interconnection for the entire terminal. This paper proposes a solution to obtain an optimal tree close to the minimum spanning tree (MST) in a short time. The construction of interconnections has been used in various design-related areas, from networks to architecture. One of these areas is an ad hoc network that only consists of mobile hosts and communicates with each other without a fixed wired network. Each host of an ad hoc network may appear or disappear frequently. Therefore, the heuristic proposed in this paper may expect various cost savings through faster interconnection reconstruction using the given information in situations where the connection target is changing.

Cost optimization of high strength concretes by soft computing techniques

  • Ozbay, Erdogan;Oztas, Ahmet;Baykasoglu, Adil
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.221-237
    • /
    • 2010
  • In this study 72 different high strength concrete (HSC) mixes were produced according to the Taguchi design of experiment method. The specimens were divided into four groups based on the range of their compressive strengths 40-60, 60-80, 80-100 and 100-125 MPa. Each group included 18 different concrete mixes. The slump and air-content values of each mix were measured at the production time. The compressive strength, splitting tensile strength and water absorption properties were obtained at 28 days. Using this data the Genetic Programming technique was used to construct models to predict mechanical properties of HSC based on its constituients. These models, together with the cost data, were then used with a Genetic Algorithm to obtain an HSC mix that has minimum cost and at the same time meets all the strength and workability requirements. The paper describes details of the experimental results, model development, and optimization results.

Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method- (저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

Psychophysical cost function of joint movement for arm reach posture prediction

  • 최재호;김성환;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.561-568
    • /
    • 1994
  • A man model can be used as an effective tool to design ergonomically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movement was known to be a difficult problem. To solve this redundancy problem, a psychophysical cost function was suggested in this study which defines a cost value for each joint movement angle. The psychophysical cost function developed integrates the psychophysical discomfort of joints and the joint range availability concept which has been used for redundant arm manipulation in robotics to predict the arm reach posture. To properly predict an arm reach posture, an arm reach posture prediction model was then developed in which a posture configuration that provides the minimum total cost is chosen. The predictivity of the psychophysical cost function was compared with that of the biomechanical cost function which is based on the minimization of joint torque. Here, the human body is regarded as a two-dimensional multi-link system which consists of four links ; trunk, upper arm, lower arm and hand. Real reach postures were photographed from the subjects and were compared to the postures predicted by the model. Results showed that the postures predicted by the psychophysical cost function closely simulated human reach postures and the predictivity was more accurate than that by the biomechanical cost function.

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • Ha, Dong-Ho;Koh, Hyun-Moo;Ok, Seung-Yong;Lee, Sun-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.