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High Resolution Linear Graphs : Graphical Aids

for Designing Off-Line Process Control
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Abstract

Designing high quality products and processes at a low cost is central technological and economic
challenge to the engineer. The combination of engineering concepts and statistical implementations
offered by Taguchi’'s off-line design technique has proven to be invaluable. By examining some
deficiencies in designs from the Taguchi’s highly fractional, orthogonal main effect plan based on
orthogonal arrays, altemative method is proposed. The maximum resolution or the minimum
aberration criterion is commonly used for selecting 2"~ ™ fractional factorial designs. We present new
high resolution (low aberration) linear graphs to simplify the complexity of selecting designs with
desirable statistical properties. The new linear graphs approach shows a substantial improvement over
Taguchi’s linear graphs and other related graphical methods for planning experiment. The new set of
linear graphs will allow the experimenter to maintain the simple approach suggested by Taguchi
while obtaining the best statistical properties of the resulting design such as minimum aberration as a
by-product without dependency on complicated computational algorithm or additional statistical
training.

1. Introduction

The predominant focus on designing designs. In the context of robust parameter
experiments in robust design problems using design, the presence of interactions among
Taguchi's [7,89] proposed sets of linear graphs variables is usually avoided by Taguchi. He
result in those designs with less desirable emphasizes additivity of effects by choosing the
statistical properties than alternative classical responses and experimental variables carefully to

avoid inducing interactions. Thus the purpose of
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Taguchi’'s original linear graphs is focused on
main effects only experiments. By this reason, he
does not consider any particular statistical
properties of the resulting designs derived from
his proposed sets of linear graphs but only focus
on the relationships among columns in the
interaction table for each orthogonal arrays so
that the proposed sets of linear graphs generally
have simple regular shapes. Those are group of
lines and triangular patterns for the small sized
array, and triangular, rectangular and polygonal
shapes for the moderately large sized orthogonal
arrays.

However, most of the underlying physical
mechanism of industry often necessitates the
experimental plans that interactions among the
variables are inevitable. In the presence of
interactions, the two-level orthogonal arrays such

as Lg, Ly, Ly and Lg are good candidate

designs and simple to implement interactions as

opposed to the three-level (Lg, Ly and Lg)

and the mixed-level orthogonal arrays

(L, Ly, etc). The three-level orthogonal
arrays are derived from the Latin square,
Graeco-Latin square, and hyper-Graeco~Latin
square designs. However, it should be noted that
the interaction terms of designs bias all the
estimated coefficients and the estimated variance.
The mixed-level orthogonal arrays allow a very

limited set of interactions. For example, an L

orthogonal array allows only one interaction

between the first two columns. However, the

interaction effects are not biased by the presence

of quadratic effects in 2"~ ™ designs since they
bias only the constant term. Thus the two-level

orthogonal arrays which are eguivalent to the

regular 2"~ ™ fractional factorials are useful to
plan such experiments that include interactions.
By observing the absence of a goodness
criterion of a design in Taguchi's linear graphs,
it is a standard discipline to consider first the
problem of maximizing the resolution of design.
Box and Hunter[2] defined the concept of
resolution of a design as one way to classify
designs. A design which has no cfactor effect
is confounded with any other effects containing
less than R— ¢ factors results in resolution K.
That is, a resolution I design does not confound
main effects with one another but does confound
main effects with two-factor interactions, and a
resolution IV design does not confound main
effects with two-factor interactions but does
confound two-factor interactions with one
another. Resolution V designs have main effects
that are clear of three—factor interactions and
two-factor

all-lower-order  effects, while

interactions are estimated clear of other
two-factor interactions. The higher the resolution
of an experimental design, the less confounding
between main factors and interactions so that an

experimenter can get more accurate conclusions.

Table 1 summarizes Taguchi’s proposed sets
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of linear graphs and their corresponding

fractional factorial designs for two-level
orthogonal arrays. The graph numbers are from
Taguchi{8]. Note that most of the resulting
designs are resolution Il even though they could
be improved of higher resolution. Since designs
with the same resolution are not equally good,
we need a more refined criterion called minimum
aberration[4]. The aberration of a design is the
number of words of minimal length in the
defining relation for the design. A minimum
aberration design is one which minimizes
aberration.

Another critical deficiency originated by the

absence of the econsiderations for statistical pro

<Table 1> Taguchi’s Linear Graphs and
Corresponding Fractional Factorials

Orthogonal | Taguchi(1987)'s | Fractional .

A;)lgﬂy Garggch Number | Factorials Resolution

Ly (D) i1 v

D 95-1 v

L (2 27—3 m

* (3/4)6) 98- m

) 210—6 m

o)) olL-6 m

(2) 213—-8 m

) ol4~9 o

L (3X4)(6) 91510 -

2 MADIA3) | -1 o

(5) ol7-12 m

8 18- 13 m

10) o%-15 m

(5) ol7~11 -

98] oB-11 o

(2X3) 9%-2 m

La @O g21-21 m

© om- -

(10 93l =25 m

(8) 2(2—% I

-perties in Taguchi's linear graphs is that the
enumeration of his selection of graph is not
exhaustive in the realms of the fractional
factorial designs. For example, the six linear
graphs that proposed by Taguchi among more
than eight hundreds types of graphs[8] for the
16-run orthogonal array missed some important
designs such as 2°7% and 2°% designs. As
Taguchif9] mentioned, there exist quite many
possible types of
combinatorial multiplicity of the representations

linear graphs due to

for arcs and nodes given certain number of
factors and their specified interactions. As the
bottom line however, the minimal graphs which
can represent all possible fractional factorial
designs under each specified number of factors
should be enumerated for each orthogonal arrays.

This paper proposes high resolution and low
aberration linear graphs which rectify the
statistical deficiencies of the resulting designs
that result from Taguchi's set of two-level
linear graphs. Those are the best among the
large set of linear graphs in terms of the
maximum resolution and minimum aberration
criteria, and can accommodate most of the
two-level fractional factorial designs. By
adapting the goodness criteria such as maximum
resolution and minimum aberration, we can
obtain the design with good statistical properties
simplicity  of

as well as maintain  the

implementation. In section 2, we derive
generators which guarantee a design of such
good criteria for each orthogonal arrays. We
linear graphs for

present high resolution

two-level orthogonal arrays in section 3. Those
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linear graphs for
orthogonal

are high  resolution

Lg, Lig, Ly and Lg arrays,
respectively. In section 4, we discuss practical
advantages of our high resolution linear graphs
related to Taguchi’s set of linear graphs as well
as the other related graphical methods in

fractional factorial design.

2. Derivation of Generators for

Two-Level Orthogonal Arrays

An orthogonal array is an » X ¢ array of s
distinct elements which has a balanced property

that every pair of columns, contains all possible

s* ordered pairs of elements with the same

frequency. Since most of the two-level
orthogonal arrays (s=2; Ly, Lg, Lig, Ly
and Lg) are regular fractional factorials, we can
exploit the relationship between these designs
and their orthogonal arrays to construct alternate
linear graphs with higher resolution. Note that
an arrangement of p-factors of a complete
factorial can generate a two-level orthogonal
array with 27 rows, where p=2,3,4, .
We can obtain the generators of the
orthogonal array corresponding to the 2"°"

fractional factonals as follow.
Step 1. Write the 2°—1 treatment combinations
in standard(Yates's) order. We call these

column notation.

Step 2. Locate the p factors corresponding to

the basic columns in the orthogonal array
in reversed order. That is, for example, the
first factor(say a) matches the column of
2771 symbols of 0 and 2”7 symbols of 1
successively, which is associated with the
pth factor in factorial plan.

Step 3. Match the labels of the column notation
represented in Step 1 with the non-basic
columns of the orthogonal array by
modulo-2 arithmetic. That is

ab - k= a+bt+k (mod2).

Step 4. The generators of design for the
orthogonal array corresponding to the 2"~ ™
fractional factorial can be obtained by
equating the m extra factors to the
appropriate column notation.

We illustrate these steps by obtaining the

generator of the Lg orthogonal array correspond

-ing to the 24! factorial design. Here, we have

n=4, m=1ad p=n—m=3.

Step 1. The column notation is : a b ab ¢ ac
bc abc .

Step 2. The three factors a, b and ¢ correspond
to the three basic columns in the Lg
orthogonal array and are located in column
1 (a) (00001111) 7, column 2 (b)

(00110011)"  and column 4 (c)
(01010101) 7, respectively.

Step 3. Match the non-basic column notations to
the appropriate columns in orthogonal array

by modulo-2 arithmetic. Those are column
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3 (ab) :(00111100)7, column 5 (ac)

(01011010)7, column 6 (be) : (01100110) ™

and column 7 (abc) (01101001 7,
respectively.

Step 4. The generator which can generate a
design of resolution IV is d=abc. Thus we
have to assign the extra factor d to the
colm 7 in order to obtain a design of
resolution IV.

We call those columns that can be obtained a
resolution IV design by assigning them as
resolution IV columns. In the above example, the
resolution IV columns are three basic columns 1,
2, 4 and an extra column 7. By knowing that
assignment for main factors to the resolution IV
columns only will result in designs of higher
resolution if the number of factors does not
exceed that of resolution IV columns, we can
select such linear graphs that ensure the
maximum resolution property. To ensure the
minimum aberration property, we adapt the
defining contrasts from Fries and Hunter{4). We
denote ab,--z consecutively as the factor
representations in the orthogonal array, and use
AB, - Z if the number of factors exceeds 26,

and a, 8, 7.+ if they exceed 52.

3. High Resolution Linear Graphs

for Two-Level Design

In this section we present a new set of linear

graphs that rectifies the deficiencies of Taguchi’'s
approach without losing its simplicity. The
proposed construction and enumeration of the set
of high resolution (low aberration) linear graphs
for each two-level orthogonal arrays involve five
steps.

Step 1. ldentify the generators by using the
method in section 2.

Step 2. Identify the resolution IV columns.

Step 3. Enumerate all the possible corresponding
fractional factorial designs. For each design,
identify the maximum number of two-factor
interactions that can be estimated.

Step 4. For each design that the number of
main factors is not greater than the number
of resolution IV columns, identify the
generators by the minimum aberration
criterion.

Step 5. For each design that can be achieved
higher resolution, locate those nodes
corresponding to the colunms identified in
step 4. Enumerate the possible patterns of
arcs which can be represented all the
estimable interactions. List only one graph
from the set of graphs which have the
same shape but different association if they

exist.

3.1 L4(2") Orthogonal Array

By using the method in the previous section,

the generators of the orthogonal array Lg(27)
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can be obtained as follows, d=ab, e=ac, f=bc
and g=abc. The confounding patterns are
l,=a+bd+cet+fe, [ly=b+ad+cfteg I.=
ctaetbf+dg, ly=d+abteft+cg, I,=e+

ac+dft+bg, l;=f+bctdetag, and ;=g
+cd+betaf. Since each main effect is
confounded with three two-factor interactions,
we can have at most four factors to obtain a
design of resolution IV. The highest possible
resolution that could be obtained using Lg
orthogonal array for various requirements set is
summarized in Table 2. Note that the high
resolution linear graphs for an L; orthogonal
array in Figure 1-a, b are exactly same as
Taguchi’s. The generator d=abc also ensures a
minimum aberration. Taguchi’s two linear graphs

for Ly are comprehensive and accommodate hoth
resolution I and V.
Taguchi’s

The experimenter under the

procedure however, by chance, must select the

appropriate linear graph without knowledge of de

<Table 2> Highest Possible Resolution by Lg

G Requirements Set Highest
ase ]
Number No. of Main{Max no. of 2-factor| Possible
Factors Interactions Resolution
1 3 3 \'s
2 4 3 v
3 5 2 m
4 6 1 m
5 7 0 m

~sirable confounding patterns of interactions and

then given the right choice must by chance
again assign certain factors to certain columns
when the requirements set has up to four main
factors and up to three two-factor interactions in
order to generate a resolution IV design.

For example in Figure 1-c, Taguchi[8]
considered an experimental plan which has four
two-level factors (A, B, C, D) and 2 two—factor
interaction effects (BC, BD). The main factors A,
B, C and D were assigned to colurnns 6, 1, 2
and 4 respectively. Thus the interaction BC is
associated with columns 3 and BD is associated
with column 5. The generators of the resulting
design is A=BD and the confounding pattemns
are 4= A+BD, Ig= B+AD, I[.=C,

Ip=D+AB, and Iz = BC. This results in
the three main factors being confounded with
two-factor interactions so that the design is
resolution II.

However, the assignments of main factors to
the resolution IV columns only in our approach
will automatically ensure the association of
interactions to the arcs of the linear graph so
that the resulting design is of high resolution
without trial and error(Figure 1-d). In order to
obtain a design of resolution V with three
factors and up to three two-factor interactions,
the experimenter must select the first linear
graph(Figure 1-a) and do not use a separate
node "7'.
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{Figure 1] Linear Graphs for Lg

3.2 L(2%) Orthogonal Array

The generators for the L;(2%) orthogonal

array are j=bd, e=ab, f=ac, g=bc, h=
abc, i=ad, k= abd, m= acd, k= ad, n= bcd,
and o=abed. Since each main effect is
confounded with seven two-factor interactions,
the experimenter can use at most eight factors
to obtain a design of resolution IV. The eight
resolution IV columns in L orthogonal array
are 1, 2, 4, 7, 8 11, 13 and 14 The highest
possible resolution designs that could be obtained
for the L orthogonal array are listed in Table
3. As seen, the designs with more than eight
factors are only resolution M. A design in five
factors, with up to ten two-factor interactions, of
resolution V can be obtained by selecting the
first linear graph in the set of six linear graphs

proposed by Taguchi for Ly orthogonal array.

However, none of Taguchi’'s set of Ly
linear graphs result in a resolution IV design for
experimental situations described by cases 2, 3
and 4 in Table 3. Additional graphs from large
set are needed to replace the six suggested by
Taguchi to capture designs with better statistical
properties.

For the case 2 which Taguchi does not
consider, a design in six factors with up to
seven two-factor interactions, the two linear
graphs in Figure 3 result in a design of
resolution IV. The generators for the high
resolution linear graphs are e=abc and f=bcd,
which are same as those for the minimum
aberration  257%  design.  The
confounding pattemns are [I,=a, {,=b, [=c,
ly=d, l,=e, L;=Ff, ly=ab+ce, l,.=ac+ be,

ly=bct+ae, ly=ad+ef, ly=bd+cf, ly=cd
+b&f and /;,=de+ af. Hence, all main effects

are clear from two-factor interactions and
two-factor interaction effects are aliased with
each other.

For the case 3 which Taguchi does not
consider as in the case 2, an experiment in seven
factors with up to seven two—factor interactions, the
linear graph in Figure 4 generates a resolution
IV design. The generators are e= abe, f= acd

and g= bed, which are used to construct the

243 minimum aberration design.
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<Table 3> Highest Possible Resolution by L4

c Requirements Set Highest
Nu:tfer No. of Main{Max no. of 2-factor| Possible

Factors Interactions Resolution

1 5 10 \Y

2 6 7 v

3 7 7 N

4 8 7 v

5 9 6 m

6 10 5 m

7 11 4 m

8 12 3 m

9 13 2 m

10 14 1 m

11 15 0 m

For the case 4, experiments in eight main
factors with up to seven two-factor interactions
which is very frequently used in practical
applications, Figure 5 shows a set of seven high

resolution linear graphs. The generators are

e=abc, g=abd, h=acd, and i= bcd,
which are essentially same as in Box, Hunter
and Hunter[3] and lead to the design of
minimum aberration also. Note that the linear
graphs corresponding to the high resolution
(Figure 5 a, b, ¢) and low resolution[8] have the
same shape, but differ in the assignment of
factors to column of the orthogonal array. When
there are more than eight factors, these graphs
can be used but they result in resolution II
design. It should be noted that our collection of
linear graphs from Figure 2 to Figure 5 are
exhaustive for the 16-run design. Furthermore,

[Figure 2] Resolution V Linear Graph with
Five Factors for Ly
in addition to maintaining high resolution and
low aberration properties, the proposed set of
graphs is quite appealing to accommodate the
various patterns of two—factor interactions in

practical applications.

[Figure 3] Resolution IV Linear Graphs with Six

Factors for Ly

[Figure 4] Resolution IV Linear Graph with

Seven Factors for L
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1

15 . 1

[Figure 5] Resolution IV Linear Graphs with Eight Factors for L

33 Lyp(2*) Orthogonal Array
By adapting the method in section 2, the
generators for the Lx(2%) orthogonal array are

f=ab, g=ac, h=bc, i=abc, j=ad, k=bd, l=abd,
m=cd, n=acd, o=becd, p=abcd, q=ae, r=be, s=abe,

t=ce, u=ace, v=bce, w=abce, x=de, y=ade
z=bde, A=abde, B=cde, C=acde, D=bcde and
E=abcde. Since main effect is confounded with
fifteen two-factor interactions, the experimenter

can have at most sixteen factors to obtain a
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design of resolution IV. The 16 resolution IV
columns are 1, 2, 4, 7, 8 11, 13, 14, 16, 19, 21,
22, 25, 26, 28 and 31.

The hierarchical relationship between
increasing sized orthogonal arrays can be used to
generalize undesirable aspects of designs result
from Taguchi’s sets of linear graphs in an
optimal sense. That is, most of the designs by
his set of linear graphs are of resolution III,
which could be better designs in terms of
resolution or aberration if hierarchical relationship
of higher resolution were maintained between
increasing sized orthogonal arrays. Linear graphs
for a large sized orthogonal array, like an L,
highlight this phenomenon. The highest possible
resolution designs that could be obtained for an

Ly, orthogonal array are listed in Table 4.
From the set of linear graphs for an Ly

orthogonal array given by Taguchi[8], none of
his thirteen linear graphs can generate a
resolution IV design since they do not include
high resolution L linear graphs as a part.
However, ten of his thirteen linear graphs could
be improved to a resolution IV by choosing
different experiment with more than sixteen
factors will be a resolution Il in nature.

First, an experimental study in six factors
with up to fifteen two-factor interactions, a
design of resolution IV can be obtained by a
linear graph in Figure 6. The generator of the
design is f=abede. Similarly, linear graphs which
do not included in this paper due to the space

limit can be used to obtain a design of
resolution IV for the cases 2, 3, 4 and 5 in Table
4. For the case 2, a design in seven factors with
up to eighteen two-factor interactions, the
corresponding linear graph will generate a
resolution IV design by the generators f=acde
and g=bcde. The generators are f=abc, g=abd,
h=bede for the case 3 and f=bcde, g=abce,
h=abde, i=acde for the case 4, and f=abcd,
g=abce, h=abde, i=acde and j=bcde for the case
5. Note that all high resolution linear graphs for
the cases 2, 3, 4 and 5 include a pentagonal
shape which is a resolution V linear graph in
the L, orthogonal array(Figure 2) as a part.
From the case 6 to 11, all the generators can
generate a resolution IV design are consisted of
three-letter. For example, for a case 6 which has
eleven factors with up to fifieen two-factor
interactions, the generators f=abc, g=bcd, h=cde,
i=acd, j=ade and k=bde guarantees a resolution
IV design.

We present high resolution linear graphs only
for the case 11 which has sixteen factors with
up to fifteen two-factor interactions. The
generators are f=abc, g=abd, h=acd, i=bcd,
j=abe, k=ace, l=bce, m=ade, n=bde, o=cde and
p=abcde. The fourteen high resolution linear
graphs in the Figure 7 represent the best linear
graphs which can accommodate a variety of
desired interaction patterns as well as generate a

design of resolution IV.

As an example, an experimenter wants to plan
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a design has a total of 15 factors, all two-factor
interactions among the four specific factors(call
group A) and among the different three specific
factors (call group B) and between one of the
three factors in the latter and the remaining six

factors (call group C).

<Table 4> Highest Possible Resolution by L3,

Ca Reguirements Set Highest
Numst(:er No. of Main|Max no. of 2-factor| Possible
Factors Interactions Resolution
1 6 15 1%
2 7 18 v
3 8 20 v
4 9 21 v
5 10 21 v
6 11 15 v
7 12 15 |\
8 13 15 v
9 14 15 I\
10 15 15 v
11 16 15 v
12 17 14 I
13 18 13 ]
14 19 12 m
15 20 11 m
16 21 10 m
17 2 9 i
18 23 8 I
19 24 7 m
20 % 6 m
21 26 5 m
22 27 4 il
23 2 3 11
24 29 2 m
25 30 1 m
26 31 0 m

As we do in the requirement graph, the
linear graph in Figure 7-f will satisfy this
experimental requirements. We assign the four
factors in group A to the rectangular shaped
part in a linear graph at Figure 7-f, three factors
in group B to the triangular shaped part and six

factors in group C to the upper part of the tri-

angular shaped part, and the remaining two fact-

{Figure 6] Resolution IV Linear Graph with Six

Factors for L

ors to any two nodes of the separate three
nodes.

It should be noted that a resolution IV design
for the cases 6 to 10 which have eleven to
fifteen factors with up to fifteen two-factor
interactions can be easily obtained from the set
of fourteen high resolution linear graphs in
Figure 7. The experimenter can choose a linear
graph which satisfies a desired interaction
pattern and then ignores the remaining nodes or
arcs. Furthermore, from the cases 12 which are
designs of resolution I, we can easily assign all
main factors and interactions from those linear
graphs by the appropriate modification rules.
Thus, for the two-level designs with 32-runs,
our collection of graphs is exhaustive as well as
the better than Taguchi’s in terms of the

maximum resolution or minimum aberration.

34 Ly4(2%) Orthogonal Array

The generators for the Lg(2%) orthogonal

array are g=ab,h=ac,i=bc,j= abc, k=
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[Figure 7] High Resolution Linear Graphs for Lsg
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ad,l= bd, m=abd, n=cd, o=acd, p=bcd, gq=abcd,
y=de, z=ade, A=bde, B=abde, (C=cde, D-acde,
E=bcde, F=abcde, G=df, H=bf, I=abf, J=¢f, K=adf,
L=bgf, M=abd, N-=df, O=adf, P=bdf, Q-=abd,
R=cdf, S=acdf, T=bcdf, U=abcdf, V=¢f, W=aef,
X=bef, Y=abef, Z=cef, a=acef, L= bcef,

y=abce, &=def, e=bdef, (= abdef,

7= cdef, 0= acdef, ¢ = bcde, x = abcdef,
Since each main effect is confounded with 31
two-factor interactions, the experimenter can
have at most thirty two factors to obtain a
design of resolution V. Including the 16 columns
in lower sized array Lg,, the sixteen additional
columns 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52,
55, 56, 59, 61 and 62 are the resolution IV

columns in Lg orthogonal array. The highest

possible resolution designs can be listed same as
the lower~sized orthogonal arrays.

First, for seven factors with up to 21
two-factor interactions, a design of resolution VI
can be obtained by choosing a linear graph in
Figure 8 The generator of the design is
g=abcdef. Similarly, up to nine factors, we can
easily obtain the resolution IV or V design by

the single linear graphl6].

From the design which has more than nine
factors, no single polygonal shaped linear graph
exists such that all lines can represent their
interactions by connecting every pair of nodes.

Hence, by using the lower-sized orthogonal

array's (eg. L) high resolution linear graphs,
we can easily obtain a type of graph having the
high resolution property. For example, a design
which has 10 factors and with up to 39
two-factor interactions, the generators g=abce,
h=abde, i=acdf and j=bcdf can generate a
design of resolution IV.

The high resolution linear graph for this case
can be obtained by adding these four nodes (23,
21, 45, 46) to the high resolution linear graph

with six factors for Lg orthogonal array in

Figure 6. The fifteen resulting high resolution
linear graphs[6] are not listed in this paper due
to the space limit. However, the set of these
linear graph has a complex system of internal
lines so that it seems to be impractical.

Similarly, for the 64-runs design cases until
21 factors with up to 41 two-factor interactions
whose generators are consisted of extra variables
with all interaction columns containing a
four-letter word, the linear graphs that can be
implemented designs of  high resolution have
no practical attraction. In order to accommodate
all the number of

maximum two-factor

interactions, all graphs are represented by a
single polygonal shape which has a complex
system of lines that cross each other. We believe
that this is not a serious limitation of high
resolution linear graphs because which the
number of two-factor interactions to be studied

exceed twice that of main factors are not
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common. Furthermore, two-level fractional
factorial experiments with 8, 16 and 32 runs are
most widely used. From the 64-runs design with
22 factors to 32 factors and with up to all 31
two~factor interactions, whose generators include
all three-letters, we can use the set of fifteen

resolution IV linear graphs in [6].
Similarly in the Lj orthogonal array, an

experimenter can easily obtain a design of
resolution IV by ignoring the extra nodes after
identifying linear graph which satisfies the
required pattern of two-factor interactions for the
design cases that have less than 32 factors. For
the 64-runs design with more than 32 factors,
the resolution I design can be easily
constructed by using the appropriate modification
rules. Hence, for the two-level designs with 64
runs, our collection of high resolution linear
graphs are almost exhaustive except for a few

cases which require a large amount of estimation

[Figure 8] Resolution Vil Linear Graph with
Seven Factors for Lg

for two-factor interactions with relatively small

number of factors.

4. Comparison with Taguchi’s
and Other Related Graphical
Methods

The proposed set of new high resolution linear

graphs eliminates most of deficiencies of designs
from the Taguchi’s set of linear graphs. First,
good statistical properties of the designs which
his graphs do not consider are guaranteed. Most
of the designs for his linear graphs of resolution
Il are improved to those of the maximum
resolution or minimum aberration criteria.

Secondly, the proposed sets of high resolution
linear graphs are quite exhaustive to cover
almost of the important designs which are
missed by Taguchi’s collection of linear graphs,
such as 2572, 2973, 21277 9771 92872,
so on. The only impractical designs in our
collection of graphs are those of the 64~runs
from 10 factors to 21 factors with considerably
large amount of interactions as discussed in the
last section.

By comparing the other graphical approaches
related to this subject, we can see that it is
difficult to make a practical approach for the

above design cases that involve an
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implementation of assignments of all interactions
whose number exceeds twice that of main
factors. The interaction graph, which is a graph
version of the interaction table, is suggested by
Kacker and Tsuif5]. As noted by the authors,
the interaction graph method is difficult to
implement for more than 16-runs. The
nonisomorphic graph is suggested by Wu and
Chen[10]. The design is represented by searching
for the nonisomorphic graph from the feasible
graphs set that is required for a preliminary
stage under the minimum aberration criterion,
which is isomorphic to the required linear graph
that representing all main effects and two-factor
interactions in the requirement set by nodes and

procedure.
For the 16-run design, all three methods

arcs same as in  Taguchi's
provide a complete list of fractional factorial
designs. For the 32-run design, the interaction
graph method cannot be implemented, the
nonisomorphic graph method can handle up to 10
factors by manual version, but our high
resolution linear graph method provides a
complete solution for the all cases. For the
64-run design, Wu and Chen's method can
handle up to only 11 factors. Our proposed
method can handle up to 10 factors and also
more than 21 factors, respectively.

Thirdly, the proposed sets of high resolution
linear graphs for each orthogonal arrays are very

efficient tools to estimate the various selected

patterns of two-factor interactions which are
known to be important in the context of quality
engineering. By considering the total number of
graphs which can match all the subsets of
specified interactions is too large to Dbe
enumerated even in a single small-sized array,
our collection of linear graphs fairly covers
practical needs of the experimenter.

Furthermore, the method to implement for
constructing design is not changed from the
framework of Taguchi's approach, which is very
straightforward to assign factors to the columns
so that no additional computational effort is
required to obtain the designs of good overall

statistical properties.
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