• Title/Summary/Keyword: minimize time-delay

Search Result 279, Processing Time 0.029 seconds

A Variable Speed Limits Operation Model to Minimize Confliction at a Bottleneck Section by Cumulative Demand-Capacity Analysis (대기행렬이론을 이용한 병목지점 충돌위험 저감 가변속도제어 운영모형)

  • LEE, Junhyung;SON, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.478-487
    • /
    • 2015
  • This study proposed a Variable Speed Limits(VSL) algorithm to use traffic information based on Cumulative Demand-Capacity Analysis and evaluated its performance. According to the analysis result, the total of delay consisted of 3 separate parts. There was no change in total travel time although the total of delay decreased. These effects was analysed theoretically and then, evaluated through VISSIM, a microscopic simulator. VISSIM simulation results show almost same as those of theoretical analysis. Furthermore in SSAM analysis with VISSIM simulation log, the number of high risk collisions decreased 36.0 %. However, the total delay decrease effect is not real meaning of decrease effect because the drivers' desired speed is same whether the VSL model is operated or not. Nevertheless this VSL model maintains free flow speed for longer and increases the cycle of traffic speed fluctuation. In other words, this is decrease of delay occurrence and scale. The decrease of speed gap between upstream and downstream stabilizes the traffic flow and leads decrease number of high risk collision. In conclusion, we can expect increase of safety through total delay minimization according to this VSL model.

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

A Distributed Real-time Self-Diagnosis System for Processing Large Amounts of Log Data (대용량 로그 데이터 처리를 위한 분산 실시간 자가 진단 시스템)

  • Son, Siwoon;Kim, Dasol;Moon, Yang-Sae;Choi, Hyung-Jin
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.58-68
    • /
    • 2018
  • Distributed computing helps to efficiently store and process large data on a cluster of multiple machines. The performance of distributed computing is greatly influenced depending on the state of the servers constituting the distributed system. In this paper, we propose a self-diagnosis system that collects log data in a distributed system, detects anomalies and visualizes the results in real time. First, we divide the self-diagnosis process into five stages: collecting, delivering, analyzing, storing, and visualizing stages. Next, we design a real-time self-diagnosis system that meets the goals of real-time, scalability, and high availability. The proposed system is based on Apache Flume, Apache Kafka, and Apache Storm, which are representative real-time distributed techniques. In addition, we use simple but effective moving average and 3-sigma based anomaly detection technique to minimize the delay of log data processing during the self-diagnosis process. Through the results of this paper, we can construct a distributed real-time self-diagnosis solution that can diagnose server status in real time in a complicated distributed system.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Development of a High Performance Web Server Using A Real-Time Compression Architecture (실시간 압축 전송 아키텍쳐를 이용한 고성능 웹 서버 구현)

  • 민병조;강명석;우천희;남의석;김학배
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.3
    • /
    • pp.345-354
    • /
    • 2004
  • In these days, such services are popularized as E-commerce, E-government, multimedia services, and home networking applications. Most web traffics generated contemporarily basically use the Hyper Text Transfer Protocol(HTTP). Unfortunately, the HTTP is improper for these applications that comprise significant components of the web traffics. In this paper, we introduce a real-time contents compression architecture that maximizes the web service performance as well as reduces the response time. This architecture is built into the linux kernel-based web accelerating module. It guarantees not only the freshness of compressed contents but also the minimum time delay using an server-state adaptive algorithm, which can determine whether the server sends the compressed message considering the consumption of server resources when heavy requests reach the web server Also, We minimize the CPU overhead of the web server by exclusively implementing the compression kernel-thread. The testing results validates that this architecture saves the bandwidth of the web server and that elapsed time improvement is dramatic.

  • PDF

Development of a High Performance Web Server Using A Real-Time Compression Architecture (실시간 압축 전송 아키텍쳐를 이용한 고성능 웹서버 구현)

  • Min Byungjo;Hwang June;Kim Hagbae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.781-786
    • /
    • 2004
  • In these days, such services are popularized as E-commerce, E- government, multimedia services, and home networking applications. Most web traffics generated contemporarily basically use the Hyper Text Transfer Protocol(HTTP). Unfortunately, the HTTP is improper for these applications that comprise significant components of the web traffics. In this paper, we introduce a real-time contents compression architecture that maximizes the web service performance as well as reduces the response time. This architecture is built into the linux kernel-based web accelerating module. It guarantees not only the freshness of compressed contents but also the minimum time delay using an server-state adaptive algorithm, which can determine whether the server sends the compressed message considering the consumption of sewer resources when heavy requests reach the web server. Also, We minimize the CPU overhead of the web server by exclusively implementing the compression kernel-thread. The testing results validates that this architecture saves the bandwidth of the web server and that elapsed time improvement is dramatic.

A Development of the Traffic Signal Progression Model for Tram and Vehicles (간선도로 트램 전용차로에서 트램과 일반차량을 위한 신호최적화 모형 개발)

  • Lee, In-Kyu;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.280-292
    • /
    • 2014
  • A tram has been the focus of a new public transportation that can solve a traffic jam, decreasing of public transit usage and environmental problem in recent years. This study aims to develop a signal optimization model for considering the traffic signal progression of tram and vehicles, when they are operated simultaneously in the same signalized intersections. This research developed the KS-SIGNAL-Tram model to obtain a minimum tram bandwidth and to minimize a vehicle's delay to perform a tram passive signal priority, it is based on the KS-SIGNAL model and is added to the properties of a tram and it's system. We conducted a micro simulation test to evaluate the KS-SIGNAL-Tram model, it showed that the developed optimization model is effective to prevent a tram's stop on intersection, to reduce a tram's travel time and vehicle's delay.

Distributed processing for the Load Minimization of an SIP Proxy Server (SIP 프록시 서버의 부하 최소화를 위한 분산 처리)

  • Lee, Young-Min;Roh, Young-Sup;Cho, Yong-Karp;Oh, Sam-Kweon;Hwang, Hee-Yeung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.929-935
    • /
    • 2008
  • As internet telephony services based on Session initiation Protocol (SIP) enter the spotlight as marketable technology, many products based on SIPs have been developed and utilized for home and office telephony services. The call connection of an internet phone is classified into specific call connections and group call connections. Group call connections have a forking function which delivers the message to all of the group members. This function requires excessive message control for a call connection and creates heavy traffic in the network. In the internet cail system model. most of the call-setup messages are directed to the proxy server during a short time period. This heavy message load brings an unwanted delay in message processing and. as a result, call setup can not be made. To solve the delay problem, we simplified the analysis of the call-setup message in the proxy server, and processed the forking function distributed for the group call-setup message. In this thesis, a new system model to minimize the load is proposed and the subsequent implementation of this model demonstrates the performance improvement.

Multiobjective Genetic Algorithm for Design of an Bicriteria Network Topology (이중구속 통신망 설계를 위한 다목적 유전 알고리즘)

  • Kim, Dong-Il;Kwon, Key-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • Network topology design is a multiobjective problem with various design components. The components such as cost, message delay and reliability are important to gain the best performance. Recently, Genetic Algorithms(GAs) have been widely used as an optimization method for real-world problems such as combinatorial optimization, network topology design, and so on. This paper proposed a method of Multi-objective GA for Design of the network topology which is to minimize connection cost and message delay time. A common difficulty in multiobjective optimization is the existence of an objective conflict. We used the prufer number and cluster string for encoding, parato elimination method and niche-formation method for the fitness sharing method, and reformation elitism for the prevention of pre-convergence. From the simulation, the proposed method shows that the better candidates of network architecture can be found.

Migration Agent for Seamless Virtual Environment System in Cloud Computing Network (클라우드 컴퓨팅 네트워크에서 Seamless 가상 환경 시스템 구축을 위한 마이그레이션 에이전트)

  • Won, Dong Hyun;An, Dong Un
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2019
  • In a MMORPG, a typical application of virtual environment systems, it is a common desire to play in a more realistic environment. However, it is very difficult to provide a latency-free virtual environment to a large user base, mainly due to the fact that the real environment must be configured on multiple servers rather than on single server and that data must be shared on the real server when users move from one region to another. Experiencing response delays continuously in the process of information synchronization between servers greatly deteriorates the degree of immersion. In order to solve this problem, it is necessary to minimize the response delay occurring in the information synchronization process between the servers. In this paper, we propose Migration Agent for efficient information synchronization between field servers providing information of virtual environment and minimizing response delay between Field Server and PC(Player Character) and implement it in cloud computing network. In the proposed system, CPU utilization of field server increased by 6 ~ 13%, and response time decreased by 5 ~ 10 seconds over the existing system in 70,000 ~ 90,000 PCs