• Title/Summary/Keyword: minimal surface

Search Result 422, Processing Time 0.028 seconds

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility (수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구)

  • Se Hyeon Oh;Seung Hyo An;Eun Hee Kim;Byung Chol Ma
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Designing an Evaluation Method for the in-situ Impact Strength of Rollable Devices

  • Hyojung Son;Ki-Yong Lee;Byoung-Seong Jeong
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.148-153
    • /
    • 2024
  • In this study, a methodology for evaluating impact strength in rollable devices was developed, focusing on measuring impact strength and evaluating rolling and unrolling durability simultaneously, with findings reported from tests on a real demonstration unit. The study utilized a flexible and rollable polyimide (PI) substrate for the evaluations. The chosen parameters for this methodology were a flat-type impactor, weights of 300 g, 500 g, and 1000 g, a rolling shaft ranging from 30 R to 5 R, and the positioning of the impactor. The results revealed that the difference in defect rates when comparing the 300 g and 500 g weights was minimal. However, the adoption of a 1000 g weight markedly increased the defect count due to damage to the PI film's surface. Furthermore, an uptick in rolling and unrolling cycles led to more pronounced surface scratches on the PI film. These methods and findings are poised to make a substantial contribution towards refining reliability testing for a wide array of rollable device applications, including smartphones, watches, pads, and wearable technology.

Biodegradation of Low-Density Polyethylene by Acinetobacter guillouiae PL211 Isolated from the Waste Treatment Facility

  • Ye-Jin Kim;Jang-Sub Lee;Jeong-Ann Park;Hyun-Ouk Kim;Kwang Suk Lim;Suk-Jin Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.189-194
    • /
    • 2024
  • Plastics are consistently produced owing to their practicality and convenience. Unmanaged plastics enter the oceans, where they adversely impact marine life, and their degradation into nano-plastics due to sunlight and weathering is of concern for all living beings. Nano-plastics affect humans via the food chain, emphasizing the necessity for effective solutions. Microbial biodegradation has been suggested as a solution, offering the advantages of minimal environmental impact and the utilization of decomposition byproducts in microbial metabolic pathways. In this study, fifty-seven bacterial strains were isolated and identified from a waste-treatment facility. Cultivation in a minimum medium with low-density polyethylene (LDPE) beads as the sole carbon source resulted in the selection of the LDPE-degrading strain Acinetobacter guillouiae PL211. The selected strain was cultured at high cell density with LDPE as a carbon source, and Fourier transform infrared (FT-IR) analysis confirmed chemical changes on the LDPE bead's surface. Field-emission scanning electron microscopy (FE-SEM) analysis revealed substantial biodegradation of the LDPE surface. These results demonstrated the capability of A. guillouiae PL211 to biodegrade LDPE beads. This discovery demonstrates the potential of an environmentally friendly process to addressing polyethylene waste issues.

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Effect of Turfgrasses to Prevent Soil Erosion (잔디류가 토양유실 방지에 미치는 영향)

  • Ahn, Byung-Goo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • Recent climatic changes by global warming include increased amount and intensity of rainfall. This study was conducted to find out possible roles of turfgrasses to reduce the impact of climatic changes, especially surface soil erosion. Soil erosions by intensive rain were measured after each significant precipitation from the artificially sloped plots of zoysiagrass, cool-season grass mixture of Kentucky bluegrass and perennial ryegrass and other typical korean summer crops. Sodded zoysiagrass resulted in minimal annual soil erosion followed by strip-sodded zoysiagrass and cool-season turfgrass mixture while dry-field rice and bean cultivations eroded the surface soils of 5 to 10 MT $ha^{-1}yr^{-1}$ and pepper cultivation resulted in 7 to 14 MT $ha^{-1}yr^{-1}$ annual loss of surface soil. Annual loss of surface soil from bare land with hand weeding was up to 18 MT $ha^{-1}yr^{-1}$ while greatly reduced soil erosion was observed from weed grown treatment.

Three Dimensional Shape Estimation by Shading Analysis of Endoscopic Image (음영분석에 의한 내시경 영상의 3차원 형체 추정에 관한 연구)

  • Lee, Tae-Su;Cha, Eun-Jong;Yun, Se-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.499-506
    • /
    • 1995
  • A new numerical method estimated three dimensional shape of the internal surface of the stomach by analyzing the shading data of endoscopic image. First analyzed was the inherent instrumentational characteristics of the endoscope system, followed by the analysis of the stomach surface properties, both of which affected the imaging properties. We employed these prior informations to implement the iterative algorithm of shading analysis based on Hom's variational approach. The present algorithm was validated by performing simulation on a $256{\times}320$ image data chosen from original $512{\times}512$ image of the stomach surface model. The best 3-dimensional estimation of the surface was achieved with the Lagrangian multiplier, of 0.3, when the algorithm best converged showing minimal estimation error.

  • PDF

Choice Stepping Reaction Time under Unstable Conditions in Healthy Young and Older Adults: A Reliability and Comparison Study

  • Lim, Ji Young;Lee, Seong Joo;Park, Dae-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.265-271
    • /
    • 2021
  • Purpose: We aimed to analyze the reliability of the test for choice stepping reaction time (CSRT) under an unstable surface and determine whether there were differences in CSRT between support surface conditions (stable vs. unstable conditions) and between age groups (young adults vs. community-dwelling older adults). Methods: Twenty healthy community-dwelling older adults and twenty young adults performed the stepping task under an unstable condition over two visits. The mean of the two trials measured for each visit was used for the analysis. The test-retest reliability was analyzed using intra-class correlation coefficient (ICC) with a 95% confidence interval, standard error of measurement (SEM), and minimal detectable change (MDC). Differences in CSRT between support surface conditions and age groups were analyzed using the independent t-test with Bonferroni correction. Results: Excellent consistency was observed for ICC >0.90 in both groups. Moreover, the SEM and MDC values of the CSRT in older and young adults were 0.03 and 0.09 and 0.01 and 0.04, respectively. There was a significant difference in the CSRT between the age groups under stable (p<0.001) and unstable conditions (p<0.001). Conclusion: The findings demonstrated that the test for CSRT under an unstable condition had reliable results in both groups. Although older adults demonstrated longer reaction times than younger adults in all surface conditions, increasing the balance control demand by implementing a choice stepping task concomitant with a balance task had no influence on the reaction time in both age groups.

Effect of orthodontic bonding with different surface treatments on color stability and translucency of full cubic stabilized zirconia after coffee thermocycling

  • Yasamin Babaee Hemmati;Hamid Neshandar Asli;Alireza Mahmoudi Nahavandi;Nika Safari;Mehran Falahchai
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.139-149
    • /
    • 2023
  • Objective: To assess the color stability and translucency of full cubic stabilized zirconia (FSZ) following orthodontic bonding with different surface treatments and coffee thermocycling (CTC). Methods: This in vitro study was conducted on 120 disc-shaped specimens of FSZ. Thirty specimens were selected as the control group and remained intact. The remaining specimens were randomly divided into three groups based on the type of surface treatment (n = 30): airborne particle abrasion (APA), silica-coating (CoJet), and carbon dioxide (CO2) laser. After metal bracket bonding in the test groups, debonding and polishing were performed. Subsequently, all specimens underwent CTC (10,000 cycles). Color parameters, color difference (ΔE00), and translucency parameter (TP) were measured three times at baseline (t0), after debonding and polishing (t1), and after CTC (t2). Data were statistically analyzed (α = 0.05). Results: Significant difference existed among the groups regarding ΔE00t0t2 (p < 0.001). The APA group showed minimum (ΔE00 = 1.15 ± 0.53) and the control group showed maximum (ΔE00 = 0.19 ± 0.02) color stability, with no significant difference between the laser and CoJet groups (p = 0.511). The four groups were significantly different regarding ΔTPt0t2 (p < 0.001). Maximal increases in TP were noted in the CoJet (1.00 ± 0.18) and APA (1.04 ± 0.38) groups while minimal increase was recorded in the control group (0.1 ± 0.02). Conclusions: Orthodontic treatment makes zirconia restorations susceptible to discoloration and increased translucency. Nonetheless, the recorded ΔE00 and ΔTP did not exceed the acceptability threshold.