• Title/Summary/Keyword: minimal residual disease

Search Result 24, Processing Time 0.026 seconds

Utility of Real Time RT-PCR for the Quantitative Detection of Minimal Residual Disease in Hematological Malignancy (백혈병 미세잔존질환 정량검출을 위한 실시간 역전사중합효소연쇄반응법의 유용성)

  • Cho, Jeung-Ai;Kim, Da-Woon;Jeong, Seong-Du;Cheon, Ji-Seon;Na, Gyeong-Ah;Kim, Hye-Ran;Kim, Jin-Gak;Kim, In-Hwan;Kim, Soo-Hyun;Shin, Myung-Geun;Kim, Hyeong-Rok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.1
    • /
    • pp.11-23
    • /
    • 2009
  • Chromosomal rearrangements are major pathology in hematological malignancies. The detection of minimal residual disease (MRD) for these gene rearrangements helps in monitoring treatment outcomes and predicting prognosis of patients. Recently, quantification of these gene transcripts based on real-time quantitative polymerase chain reaction (RQ-PCR) has been used as MRD detection. The purpose of this study is to ensure the usefulness of the RQ-PCR technique for detecting MRD in hamatological malignancy patients. The patients had been diagnosed to AML1-ETO positive AML, PML-RARa positive AML and BCR-ABL positive MPN at Chonnam National University Hwasun Hospital from Jan. 2006 to Aug. 2008. The fusion transcript was quntified by RQ-PCR and analyzed in comparison to conventional cytogenetics, FISH and RT-PCR. The fusion gene transcript was quantified by RQ-PCR in 57 samples from 14 patients with AML1-ETO positive AML, 79 samples from 27 patients with PML-RARa positive AML and 108 samples from 36 patients with CML. At diagnosis, the quantitative fusion transcripts for AM1-ETO, PML-RARa and BCR-ABL showed the range of 0.485552651~10.82233683 (mean 3.782217131, SD 2.998052348), 0.005300395~0.29267494 (mean 0.056901315, SD 0.080131381) and 0.1293929~12.94826849 (mean 1.701935665, SD 2.200913158). The increase of AML1-ETO fusion gene transcripts preceded morphologic relapse in two patients. Quantification of fusion gene transcripts by RQ-PCR could detected MRD in samples which were negative by in cytogenetic analysis or FISH. Our findings indicated that quantitative analysis of AML1-ETO, PML-RARa and BCR-ABL transcripts by RQ-PCR might be a useful tool for the monitoring of minimal residual disease in hematological malignancies.

  • PDF

Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review

  • Shah, Krupa;Parikh, Sonia;Rawal, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3025-3033
    • /
    • 2016
  • Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCR-ABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCR-ABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCR-ABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKI-insensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either pre-existing or induced due to therapy is still a challenge for the clinician. A proposed in-vitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling.

Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy

  • Jae-Ho Yoon;Seok Lee
    • The Korean journal of internal medicine
    • /
    • v.39 no.1
    • /
    • pp.34-56
    • /
    • 2024
  • Acute lymphoblastic leukemia (ALL) is one of the most rapidly changing hematological malignancies with advanced understanding of the genetic landscape, detection methods of minimal residual disease (MRD), and the development of immunotherapeutic agents with good clinical outcomes. The annual incidence of adult ALL in Korea is 300-350 patients per year. The WHO classification of ALL was revised in 2022 to reflect the molecular cytogenetic features and suggest new adverse-risk subgroups, such as Ph-like ALL and ETP-ALL. We continue to use traditional adverse-risk features and cytogenetics, with MRD-directed post-remission therapy including allogeneic hematopoietic cell transplantation. However, with the introduction of novel agents, such as ponatinib, blinatumomab, and inotuzumab ozogamicin incorporated into frontline therapy, good MRD responses have been achieved, and overall survival outcomes are improving. Accordingly, some clinical trials have suggested a possible era of chemotherapy-free or transplantation-free approaches in the near future. Nevertheless, relapse of refractory ALL still occurs, and some poor ALL subtypes, such as Ph-like ALL and ETP-ALL, are unsolved problems for which novel agents and treatment strategies are needed. In this review, we summarize the currently applied diagnostic and therapeutic practices in the era of advanced genetic analysis and targeted immunotherapies in United States and Europe and introduce real-world Korean data.

Prognostic significance of minimal residual disease detected by a simplified flow cytometric assay during remission induction chemotherapy in children with acute lymphoblastic leukemia

  • Koh, Kyung-Nam;Park, Mee-Rim;Kim, Bo-Eun;Im, Ho-Joon;Park, Chan-Jeoung;Jang, Seong-Soo;Chi, Hyun-Sook;Seo, Jong-Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.11
    • /
    • pp.957-964
    • /
    • 2010
  • Purpose: Our study attempted to determine the prognostic significance of minimal residual disease (MRD) detected by a simplified flow cytometric assay during induction chemotherapy in children with B-cell acute lymphoblastic leukemia (B-ALL). Methods: A total of 98 patients were newly diagnosed with precursor B-ALL from June 2004 to December 2008 at the Asan Medical Center (Seoul, Korea). Of those, 37 were eligible for flow cytometric MRD study analysis on day 14 of their induction treatment. The flow cytometric MRD assay was based on the expression intensity of CD19/CD10/CD34 or aberrant expression of myeloid antigens by bone marrow nucleated cells. Results: Thirty-five patients (94.6%) had CD19-positive leukemic cells that also expressed CD10 and/or CD34, and 18 (48.6%) had leukemic cells with aberrant expression of myeloid antigens. Seven patients with ${\geq}1%$ leukemic cells on day 14 had a significantly lower relapse-free survival (RFS) compared to the 30 patients with lower levels (42.9 % [18.7%] vs. 92.0% [5.4%], $P$=0.004). Stratification into 3 MRD groups (${\geq}1%$, 0.1-1%, and <0.1%) also showed a statistically significant difference in RFS (42.9% [18.7%] vs. 86.9% [8.7%] vs. 100%, $P$=0.013). However, the MRD status had no significant influence on overall survival. Multivariate analysis demonstrated that the MRD level on day 14 was an independent prognostic factor with borderline significance. Conclusion: An MRD assay using simplified flow cytometry during induction chemotherapy may help to identify patients with B-ALL who have an excellent outcome and patients who are at higher risk for relapse.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Immunocell Therapy for Lung Cancer: Dendritic Cell Based Adjuvant Therapy in Mouse Lung Cancer Model (폐암의 면역세포 치료: 동물 모델에서 수지상 세포를 이용한 Adjuvant Therapy 가능성 연구)

  • Lee, Seog-Jae;Kim, Myung-Joo;In, So-Hee;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Background: The anti-tumor therapeutic effect of autologous tumor cell lysate pulseddendritic cells (DCs) was studied for non-immunogenic and immune suppressive lung cancer model. To test the possibility as an adjuvant therapy, minimal residual disease model was considered in mouse in vivo experiments. Methods: Syngeneic 3LL lung cancer cells were inoculated intravenously into the C57BL/6 mouse. Autologous tumor cell (3LL) or allogeneic leukemia cell (WEHI-3) lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, tumor formation in the lung and the tumor-specific systemic immunity were observed. Tumor-specific lymphocyte proliferation and the IFN-${\gamma}$ secretion were analyzed for the immune monitoring. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with tumor cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor formation was suppressed in 3LL tumor cell lysate pulsed-DC treated group, while 3LL-specific immune stimulation was minimum. WEHI-3-specific immune stimulation occurred in WEHI-3 lysate-pulsed DC treated group, which had no correlation with tumor regression. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs as an adjuvant therapy for minimal residual disease state of lung cancer. The significance of immune modulation in DC therapy including the possible involvement of NK cell as well as antigen-specific cytotoxic T cell activity induction was discussed.

Efficacy and safety of norfloxacin for the control of bacterial diseases in eel (Anguilla japonica)

  • Heo, Gang-joon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.365-369
    • /
    • 1999
  • A study on quinolone antibacterial, norfloxacin, was performed to apply for the control of bacterial diseases in eel (Anguilla japonica). Norfloxacin was proved excellent in antibacterial activity and sensitivity against fish bacterial pathogens when compared with the existing antibacterials and antibiotics. And any side effect was not observed during the period of indicated use. An outline of minimal inhibitory concentration was $0.03{\sim}0.1{\mu}g/ml$, $TLm_{48h}$ value was 3,500mg/l. The residual time of the day in fish body was less than 17 days and any pathological changes were not observed. The study has revealed that norfloxacin can be applied to treat some fish bacterial disease by the dosage of 100g/day/ton of fish body weight for about 3 days perorally. Further, norfloxacin may be used for the control of bacterial pathogens in eel.

  • PDF

The Role of FDG PET in Malignant Lymphoma (악성 림프종에서 FDG PET의 역할)

  • Yun, Mi-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.53-63
    • /
    • 2002
  • FDG PET is a functional imaging modality whose ability to detect lesions is directly based on a change of the glycolytic metabolism of targeted tissues, may be advantageous over other techniques. Combined with excellent image qualify, high spatial resolution, and whole body imaging capability, it has become popular as a new approach in the evaluation of patients with various malignancies. Initial staging of nodal and extranodal lymphoma using FDG PET has been proven to be at least equal or superior to conventional imaging modalities. For the assessment of treatment responsiveness, FDG PET has a major impact on the management of patients in differentiating residual lymphoma from treatment related benign changes. Residual FDG uptake after the completion of chemotherapy is a good predictor of early relapse. However, it seems that the absence of FDG uptake in tumor mass may not exclude minimal residual disease causing later relapse. In the early evaluation of treatment response only after a few cycles of chemotherapy, FDG PET may have a promising role in identifying non-responders who could benefit from a different treatment strategy. At present, FDG PET appears to be the cost-effective, diagnostic modality of choice in the management of lymphoma patients. The role of FDG PET based-systems in terms of affecting long-term prognosis and survival benefit should be further elucidated in future prospective studios.

A Study on efficacy and safety of antibacterial(pefloxacin methanesulfonate) to cultured fish, Cyprinus caprio and Paralichthys olivaceus (양식어류(이스라엘 잉어, 넙치)에 대한 항균물질 pefloxacin의 효능 및 안전성에 관한 연구)

  • Heo, Gang-joon;Kim, Jeong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.153-163
    • /
    • 1994
  • A study on quinolone antibacterial (pefloxacin methanesulfonate) was performed to use for the drug of fisheries. Petloxacin was proved excellent in antibacterial activity and resistance against fish pathogens when compared with the existing antibacterials. And any side effect was not observed during the period of indicated use. An outline of MIC(Minimal Inhibitory Concentration) was $1.6{\sim}6.4{\mu}g/ml$, $TLm_{48h}$ value were 380~420 ppm in Israeli carp(Cyprinus caprio) and 2100~2300 ppm in flounder(Paralichthys olivaceus). The residual time of fish body was less than 15 days. So we can treat some bacterial disease of fish by the dosage of 100 g/day/ton of fish body weight for 3 days and pefloxacin is thought to be used effectively and widely against most bacterial fish pathogens.

  • PDF

Liquid Biopsy: An Emerging Diagnostic, Prognostic, and Predictive Tool in Gastric Cancer

  • Hye Sook Han;Keun-Wook Lee
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.4-28
    • /
    • 2024
  • Liquid biopsy, a minimally invasive procedure that causes minimal pain and complication risks to patients, has been extensively studied for cancer diagnosis and treatment. Moreover, it facilitates comprehensive quantification and serial assessment of the whole-body tumor burden. Several biosources obtained through liquid biopsy have been studied as important biomarkers for establishing early diagnosis, monitoring minimal residual disease, and predicting the prognosis and response to treatment in patients with cancer. Although the clinical application of liquid biopsy in gastric cancer is not as robust as that in other cancers, biomarker studies using liquid biopsy are being actively conducted in patients with gastric cancer. Herein, we aimed to review the role of various biosources that can be obtained from patients with gastric cancer through liquid biopsies, such as blood, saliva, gastric juice, urine, stool, peritoneal lavage fluid, and ascites, by dividing them into cellular and acellular components. In addition, we reviewed previous studies on the diagnostic, prognostic, and predictive biomarkers for gastric cancer using liquid biopsy and discussed the limitations of liquid biopsy and the challenges to overcome these limitations in patients with gastric cancer.