• Title/Summary/Keyword: minimal reduction

Search Result 325, Processing Time 0.032 seconds

Physiology of Strobilus Initiation in Slash Pine II. Ovulate Strobilus Initiation in Relation to Carbohydrate and Nitrogen Metabolism of Terminal Buds (슬래쉬소나무의 화아원기(花芽原基) 형성(形成)의 생리학적(生理學的) 연구(硏究) (II) - 정아(頂芽)의 탄수화물(炭水化物)과 질소(窒素) 신진대사(新陳代謝)와 자화(雌花) 원기형성(原基形成)과의 관계(關係))

  • Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.16-26
    • /
    • 1980
  • Soluble carbohydrates and free amino acids in the terminal buds of Pinus elliottii were analyzed to understand the nutritional status of the buds during the period of female strobilus initiation. Grafted, 18-year-old slash pine trees in a seed orchard were divided into two groups, abundant-flowering (AFG) and poor-flowering group (PFG) according to their flowering history. Four types of terminal buds, with two types from each group, were examined: (1) large buds in upper crown (female-producing buds) and small buds in lower crown (male-producing) in AFG, (2) large buds in upper crown (vegetative buds) and small buds in lower crown (male-producing) in PFG. Bud samples were collected four times from late July to early September. Free sugars and free amino acids (75% ethanol-soluble) were determined by gas chromatography and automatic analysis, respectively. Sugar content in the large buds of both groups was greater than in the small buds of the same group. Fructose and glucose were major sugars found in the bud tissue. Arginine was the most abundant amino acid in all four types of buds, with the concentration increased from 23% in late July to 60% in early September. Arginine and total amino acid content in the female-producing buds of AFG was much lower than three other types of buds. When female-producing buds and male-producing buds of AFG were compared in their arginine content, the former contained about same amount as the latter in late July, but showed one-fourth of the latter in early September. The low level of argining in the female-producing buds suggested a minimal or negative role of arginine in the initiation of female flower primordia. A higher sugar to amino acid ratio was observed with female-producing buds of AFG than with vegetative or male-producing buds of either flowering group. The low amino acid content in the female­producing buds suggested that initiation of female strobilus primordia was associated with temporary reduction in the metabolic activity of the buds.

  • PDF

Examining the Relationship Among Restaurant Brand Relationship Quality, Attribution, and Emotional Response After Service Failure Experience (서비스 실패 경험 후 레스토랑 브랜드 품질, 귀인 및 감정반응 관계분석)

  • Jang, Gi-Hwa;Song, Soo-Ik;Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1120-1133
    • /
    • 2018
  • The purpose of this study is to validate the failure attribution factors affecting emotional changes after a failed service by local restaurant users, and the relapse effects of the perceived failure of a customer's brand relationship. In this study, the implications of this study can be divided into the null theory and the homogenous theory, in which the study of the relationship between individual belief that influences the null theory and the post-gender emotional response is minimal. The independence of the crash response (angerous VS compassion) has been equally validated as building a belief-gathering-emotion three-step model. First, emotional BRQ (intimate and love) has a reduction effect on controllable geeks, and behavioral BRQ (relative existence) has an extended effect on controllable geeks. From a management perspective, restaurant managers should be less aware of the repeatability of a customer's service failure and call for customer sympathy. Integratedly, restaurant managers must control the customer's perception of service failure and restore the impact of the customer's BRQ on emotional reactions. A variety of service recovery measures should be established and the cerumen should be controlled. In addition, since BRQs have different effects on anger and sympathy (extended VS), different service failure recovery plans should be presented depending on the characteristics of the customer BRQ. For example, measures such as monetary compensation or fair dealing, emotional distribution to close and loving customers, and persuasion of reciprocal benefits to interdependent customers should be developed according to circumstances. This study explored the effectiveness of the geeks after a service failure and has limitations that do not take into account the various regulatory factors in the BRQ-return-Empression process. Thus, in further studies, the effects of adjusting service failure strength should be considered and a more complete model should be built.

Evaluation of Patient Radiation Doses Using DAP Meter in Interventional Radiology Procedures (인터벤션 시술 시 면적선량계를 이용한 환자 방사선 선량 평가)

  • Kang, Byung-Sam;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipments in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effectives of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were $237.7Gy{\cdot}cm^2$ in TACE, $17.3Gy{\cdot}cm^2$ in AVF, $114.1Gy{\cdot}cm^2$ in LE PTA & STENT, $188.5Gy{\cdot}cm^2$ in TFCA, $383.5Gy{\cdot}cm^2$ in Aneurysm Coil, $64.6Gy{\cdot}cm^2$ in PTBD, $64.6Gy{\cdot}cm^2$ in Biliary Stent, $22.4Gy{\cdot}cm^2$ in PCN, $4.3Gy{\cdot}cm^2$ in Hickman, $2.8Gy{\cdot}cm^2$ in Chemo-port, $4.4Gy{\cdot}cm^2$ in Perm-Cather, $17.1Gy{\cdot}cm^2$ in PCD, and $357.9Gy{\cdot}cm^2$ in Vis, EMB. Dose referenece level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipments and procedures in the interventional radiology procedures, further studies and monitorings are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.