• Title/Summary/Keyword: minimal processing technology

Search Result 102, Processing Time 0.041 seconds

Pasteurization of dairy products (우유와 유제품의 살균기술)

  • Choi, Hyosu;Oh, Namsu
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.256-263
    • /
    • 2020
  • Milk pasteurization is used to destroy harmful bacteria present in the raw milk for improvement of the keeping quality of dairy products. It is generally carried out in dairy industries as the heating process of raw milk in properly designed and operated equipment to a specific temperature for a specified a specified period. However, thermal processing may cause quality changes in milk as well as significant nutritional losses. Hence, many researchers have started work to design alternative strategies to produce safer foods with minimal thermal treatments for pasteurization. Therefore, the present paper shows the current status of commercial pasteurization system of dairy products in korean industry and the research efforts carried out by researchers on novel milk pasteurization system that could be an alternative to traditional thermal processes for maintaining the freshness of dairy products.

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Comparison of Chemical Composition, Quality, and Muscle Fiber Characteristics between Cull Sows and Commercial Pigs: The Relationship between Pork Quality Based on Muscle Fiber Characteristics

  • Jeong-Uk Eom;Jin-Kyu Seo;Kang-Jin Jeong;Sumin Song;Gap-Don Kim;Han-Sul Yang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.87-102
    • /
    • 2024
  • This study aims to compare the chemical composition, quality, and muscle fiber characteristics of cull sows and commercial pigs, investigating the effect of changes in muscle fiber characteristics on pork quality. The proximate composition, color, pH, water-holding capacity (drip loss and cooking loss), protein solubility, total collagen content, and muscle fiber characteristics of cull sows (n=20) and commercial pigs (n=20) pork were compared. No significant differences were found between cull sows and commercial pigs in terms of proximate composition, drip loss, protein solubility, or total collagen content of their meat (p<0.05). However, cull sow pork exhibited a red color and a higher pH (p<0.05). This appears to be the result of changes in muscle fiber number and area composition (p<0.05). Cull sow meat also displayed better water-holding capacity as evident in a smaller cooking loss (p<0.05), which may be related to an increase in muscle fiber cross-sectional area (p<0.05). In conclusion, muscle fiber composition influences the pork quality; cull sow pork retains more moisture when cooked, resulting in minimal physical loss during processing and can offer more processing suitability.

Optimization of Drying Conditions for Quality Semi-dried Mulberry Fruit (Morus alba L.) using Response Surface Methodology

  • Teng, Hui;Lee, WonYoung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Mulberry fruits were semi-dried using hot air ($60-100^{\circ}C$) or cool air ($20-40^{\circ}C$), and the effects of the drying temperature and processing time on the quality of the final dried mulberry fruits were investigated. Response surface methodology was employed to establish a statistical model and predict the conditions resulting in minimal loss of the total phenolic content (TPC) and ascorbic acid. Thus, using overlapped contour plots, the optimal conditions for producing semi-dried mulberry fruits, which reduced the moisture residue to 45% and minimized the nutrient losses of TPC and ascorbic acid, were determined for the hot-air process ($60.7^{\circ}C$ for 5.4 h) and cool-air process ($34.8^{\circ}C$ for 23.3 h). Plus, a higher drying temperature was found to lead to a faster loss of moisture and ascorbic acid, while the TPC was significantly decreased in the cool-air dried mulberry fruits due to the higher activity of polyphenol oxidase between 30 and $40^{\circ}C$.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Study on Design of Digital filter by 2's Complement Representation using Bidirectional algorithm (양방향 알고리즘을 이용한 2의 보수 표현 기법에 의한 디지털 필터의 설계에 관한 연구)

  • LEE, Youngseock
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The digital filter is essential element in digital signal processing area. It needs a high computational burden caused by multiplying and adding. The multiplier in digital filter is a dominant element, which occupies an wide area at the field of VLSI design, needs high power-consuming and also decides critical path that affects to filter performance. In this paper we proposed the simultaneous transform method which is represented 2's complementary representation to CSD and MSD representation to solve a complexity problem and to improve a computational speed. The performance of proposed method was implemented in VHDL and applied to an digital filters, was evaluated the decreasing of critical path delay.

  • PDF

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.

Shelf-life Extension of Raw Oyster Crassostrea gigas by Depuration Process (인공정화에 의한 참굴(Crassostrea gigas)의 유통기한 연장)

  • Lee, Do-Ha;Kang, Dong-Min;Park, Seul-Ki;Jeong, Min-Chul;Kang, Min-Gyun;Jo, Du-Min;Lee, Jae-Hwa;Lee, Da-Eun;Sim, Yoon-Ah;Jeong, Geum-Jae;Cho, Kyung-Jin;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.842-850
    • /
    • 2020
  • The objective of this study was to evaluate the effect of the depuration process (artificial seawater sterilization using UV light) for extending the shelf life of raw oyster Crassostrea gigas and maintaining food quality. To confirm the effects of depuration, microbiological (viable cell count) and several physiochemical analyses (pH and glycogen levels in shucked oyster and pH, soluble protein, and turbidity in filling water) were carried out during the storage of raw oysters. The results showed that depuration could effectively extend the shelf life (2-3 days) of raw oysters with minimal change in food quality, including pH and glycogen content. Thus, the depuration process proposed in this study could successfully be applied to processing practices for other shellfish to extend their shelf life and contribute to the management of seafood safety issues.

An effective automated ontology construction based on the agriculture domain

  • Deepa, Rajendran;Vigneshwari, Srinivasan
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.573-587
    • /
    • 2022
  • The agricultural sector is completely different from other sectors since it completely relies on various natural and climatic factors. Climate changes have many effects, including lack of annual rainfall and pests, heat waves, changes in sea level, and global ozone/atmospheric CO2 fluctuation, on land and agriculture in similar ways. Climate change also affects the environment. Based on these factors, farmers chose their crops to increase productivity in their fields. Many existing agricultural ontologies are either domain-specific or have been created with minimal vocabulary and no proper evaluation framework has been implemented. A new agricultural ontology focused on subdomains is designed to assist farmers using Jaccard relative extractor (JRE) and Naïve Bayes algorithm. The JRE is used to find the similarity between two sentences and words in the agricultural documents and the relationship between two terms is identified via the Naïve Bayes algorithm. In the proposed method, the preprocessing of data is carried out through natural language processing techniques and the tags whose dimensions are reduced are subjected to rule-based formal concept analysis and mapping. The subdomain ontologies of weather, pest, and soil are built separately, and the overall agricultural ontology are built around them. The gold standard for the lexical layer is used to evaluate the proposed technique, and its performance is analyzed by comparing it with different state-of-the-art systems. Precision, recall, F-measure, Matthews correlation coefficient, receiver operating characteristic curve area, and precision-recall curve area are the performance metrics used to analyze the performance. The proposed methodology gives a precision score of 94.40% when compared with the decision tree(83.94%) and K-nearest neighbor algorithm(86.89%) for agricultural ontology construction.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.