• 제목/요약/키워드: minimal null designs

검색결과 2건 처리시간 0.017초

POLYTOPES OF MINIMAL NULL DESIGNS

  • Cho, Soo-Jin
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.143-153
    • /
    • 2002
  • Null designs form a vector space and there are only finite number of minimal null designs(up to scalar multiple), hence it is natural to look at the convex polytopes of minimal null designs. For example, when t = 0, k = 1, the convex polytope of minimal null designs is the polytope of roofs of type An. In this article, we look at the convex polytopes of minimal null designs and find many general properties on the vertices, edges, dimension, and some structural properties that might help to understand the structure of polytopes for big n, t through the structure of smaller n, t.

A NOTE ON NULL DESIGNS OF DUAL POLAR SPACES

  • CHO, SOO-JIN
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.15-21
    • /
    • 2005
  • Null designs on the poset of dual polar spaces are considered. A poset of dual polar spaces is the set of isotropic subspaces of a finite vector space equipped with a nondegenerate bilinear form, ordered by inclusion. We show that the minimum number of isotropic subspaces to construct a nonzero null t-design is ${\prod}^{t}_{i=0}(1+q^{i})$ for the types $B_N,\;D_N$, whereas for the case of type $C_N$, more isotropic subspaces are needed.