• Title/Summary/Keyword: minimal bactericidal concentration

Search Result 42, Processing Time 0.034 seconds

Study on the Antimicrobial Effect of Ranunculus Species on Pathogenic Bacteria (병원성세균(病原性細菌)에 대한 미나리 아재비과(科) 식물(植物)의 항균성(抗菌性)에 관(關)한 연구(硏究))

  • Yoo, Tae Suk;Kim, Yong Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1981
  • In order to observe the bactericidal effect of Ranunculus species on pathogenic bacteria, the minimal inhibitory concentration and bactericidal effect was tested Throughout the studies, the following experimental results were obtained and summarized. 1. Minimal inhibitory concentration of Ranunculus species extracts on E. coli was observed in the medium in which 1% Ranunculus species extracts added to brain heart infusion agar. 2. Minimal inhibitory concentration of Ranunculus species extracts on Salmonella species observed in the medium in which 1% Ranunculus species extracts added to brain heart infusion agar. 3. Minimal inhibitory concentration of Ranunculus species extracts on Staphylococcus and Streptococcus was observed in the medium in which 1.5% Ranunculus species extracts added to brain hrart infusion blood agar. 4. The Bactericidal effect of Ranunculus species extracts on E. coli and S. typhi was observed in 30 minutes. 5. The Bactericidal effect of Ranunculus species extracts on staphylococcus aureus was obserded in 40 minutes.

  • PDF

Antimicrobial Susceptiblity of Brucella canis Isolated from Korea (국내 분리 Brucella canis의 항균제 감수성)

  • 김종완;이영주;탁연빈
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • Little is known to data about the in vitro activity of antimicrobial agents aganist Brucella cams (B cams) isolated from Korea. Our study aimed at determining the in vitro activities of 15 antimicrobial agents against 3 isolates and 52 isolates of B cams from dogs in 1994 and 2002, respectively. In minimal inhibitory concentration (MIC) study, minocycline and doxycycline showed the lowest MICs ( < 0.06-0.5 ug/ml). Gentamicin, streptomycin, ciprofloxacin, norfloxacin and rifampin showed MICs in the range of less than 1 ug/ml. Lincomycin and sulfisox azole showed the highest MICs ( > 32 ug/ml). Interestingly, MICs of macrolides (erythromycin, spiramycin, tylosin) against 52 isolates in 2002 were 16-64 times higher than that of 3 isolates in 1994. In minimal bactericidal concentration (MBC) study, gentamicin, streptomycin, ciprofloxacin and norfloxacin showed the lowest MBCs [0.12-1 ug/ml (1-2 times higher than MIC)], but minocycline and doxycycline showed the highest MBCs [8-32 ug/ml (128 times higher than MIC)]. Rifampin showed the MBCs in the range from 2 to 4 ug/ml (2-4 times higher than MIC).

Antibacterial Activities of Essential Oil from Zanthoxylum schinifolium Against Food-Borne Pathogens (산초 정유성분의 식중독균에 대한 항균 활성)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.206-213
    • /
    • 2010
  • In this study, the antibacterial activities of essential oil from Zanthoxylum schinifolium against four Gram-positive bacteria and six Gram-negative bacteria were investigated. The antibacterial activity of the oils was determined using the agar-well diffusion assay, MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). In particular, essential oil from Z. schinifolium showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Essential oil from Z. schinifolium displayed large inhibition zones especially against Bacillus cereus (31 mm). At concentrations between 0 and $20\;{\mu}g/mL$ the oils showed an antibacterial effect against both Gram-negative and Gram-positive bacteria. The minimum inhibitory concentration (MIC) values against nine bacteria ranged from 1.25 to $5\;{\mu}g/mL$. The minimum bactericidal concentration (MBC) values against eight bacterial ranged from 2.5 to $20\;{\mu}g/mL$, except Shigella sonnei. Furthermore, our finding on the antibacterial activities of essential oils from Zanthoxylum schinifolium validated the use of this plant for medical purposes.

Bactericidal activities of LB20304, a new fluoroquinolone

  • Paek, Kyoung-Sook;Kim, Mu-Yong;Kim, In-Chull;Kwak, Jin-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.317-320
    • /
    • 1996
  • The time-kill curves of LB20304, a novel fluoroquinolone that has potent antibacterial activity against gram-positve and gram-negative bacteria, were calculated at the concentrations of 1/4-, 1/2-, 1-, 2- and 4-times the MIC against Staphylococcus aureus 77, Escherichia coli 3739E, Pseudomonas aeruginosa 1912E. The bactericidal activity of LB20304 for these strains was very rapid and comparable to that of ciprofloxacin. LB20304 produced a decrease in the $log_10$ CFU per milliliter of${\geq}$3 within 2 h at 4-times the MIC for all strains and consitently prevented regrowth of bacteria after 24 h of incubation. The MBCs (Minimal Bactericidal Concentration) of LB20304 against test organisms were equal to or at most four-times higher than the MICs.

  • PDF

In Vitro Bactericidal and Anticancer Activity of New Metabolite, ARK42, Isolated from Aspergillus repens K42

  • Park, Je-Won;Song, Beom-Seok;Ryu, Do-Jin;Lee, Chan;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1017-1021
    • /
    • 2002
  • A novel antibacterial metabolite, ARK42, was elated from a xerophilic fungal strain K42, and Identified as Aspergillus repens based on its morphological characteristics. The metabolite exhibited antibacterial activities towards Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, with MICs of 25, 12.5, and $3.125{\mu}g/ml$, respectively, and killed Pseudomonas aeruginosa with minimal bactericidal concentration (MBC) of $12.5{\mu}g/ml$. Furthermore, anticancer activities were demonstrated against human colon cancer DLD- 1 and lung cancer LXFL529 cells with an $IC_50$ of 10 and $1{\mu}g/ml$, respectively.

An Experimental Study on the Bactericidal Activity of Chlorhexidine Gluconate Solution (Chlorhexidine Gluconate Solution의 殺菌效果에 관한 實驗的 연구)

  • Zong, Moon-Shik;Chong, Kyu-Kwan;Kim, Tae-Shik;Kim, Chung-Ock
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 1987
  • Owing to the modification of testing methods of disinfectants or antiseptics, variations of bacteria according to characteristics of regions and resistance changes of bacteria, it is necessary that the bactericidal activities of disinfectants or antiscptics should be reevaluated nowadays. This study was carried out to reevaluate in the vitro bactericidal activity of Chlorhexidine gluconate solution. The results of experiment were summarized as follows. 1. For Chlorhexidine gluconate solution, minimal inhibitory concentrations of total bacteria taken from sewage water and Legionella bozemanii were $2.0\times 10^{-3}$%, $1.0\times 10^{-2}$%, respectively and were comparatively high. Minimal inhibitory concentration of Shigella flexneri was $1.6\times 10^{-4}$%, and was comparatively low. 2. For total bacteria taken from sewage water, it was killed within 15 minute in 0.1% Chlorhexidine gluconate solution when number of cells was $1.6\times 10^7$/ml. 3. For 0.0125% Chlorhexidine gluconate solution, decimal reduction times of Ps. aeruginosa, S. typhi, E. Coli were 45 sec, 25 sec, 18 sec repectively. For 1%, 0.125% Chlorhexidine gluconate solution, decimal reduction times of Legionella bozemanii were 10 sec, 45 sec respectively. 4. There was significant difference in the bactericidal activity of Chlorhexidine gluconate solution according to temperattire. Phenol coefficient of Chlorhexidine gluconate solution as using Staph. aureus was 100 and comparatively higher than that of other disinfectants. In comparison with other disinfectants, Legionella bozemanii was killed within 5 minutes in 0.02% KMnO$_4$ and 0.125% Chlorhexidine giuconate solution but was not killed within 3 minutes in 1% 0-cresol, 1% Phenol.

  • PDF

Enhancement of Erythrosine Photodynamic Therapy against Streptococcus mutans by Chlorhexidine (Streptococcus mutans에 대한 클로르헥시딘과 Erythrosine 광역동 치료의 상승효과)

  • Park, Jongcheol;Park, Howon;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • The purpose of this study was to investigate the synergistic effects of erythrosine sensitized with a conventional halogen curing unit and sub-minimal bactericidal concentration(sub-MBC) of chorhexidine on bacterial viability of Streptococcus mutans in planktonic state. Sub-minimal bactericidal concentration of chlorhexidine was added into wells containing bacteria and erythrosine. The range of concentrations tested for chorhexidine was from 0.0000001% to 0.001%. The irradiation of the bacterial suspensions was performed for 15 sec with a conventional halogen curing unit light. In another set of experiment, the effects of 0.001% chlorhexidine were observed by adding chlorhexidine into wells containing the sub-minimal bactericidal concentration of erythrosine. At the concetration of 0.001% chlorhexidine, there were no antibacterial effects in the absence of erythrosine PDT(p < 0.05). At the concentraton of $1{\mu}M$ erythrosine, there was no photodynamic therapy effect in the absence of chlorhexidine(p < 0.05). But in the presence of sub-minimal bactericidal concentration of erythrosine with light exposure, the addition of 0.001% chlorhexidine increased the bactericidal rate(p < 0.05). A combination of erythrosine PDT with sub-MBC chlorhexidine resulted in a significant reduction in bacterial counts when compared to the case with the absence of chlorhexidine.

The Antibacterial Component from Cinnamomi Cortex against a Cariogenic Bacterium Streptococcus matans OMZ 176

  • Bae, Ki-Hwan;Ji, Jong-Myung;Park, Kyung-Lae
    • Archives of Pharmacal Research
    • /
    • v.15 no.3
    • /
    • pp.239-241
    • /
    • 1992
  • The methanol extract of Cinnamoni Cortex showed antibacterial action against cariogenic bacterium, Streptococcus mutans OMZ 176. The active principle of the extract was identified to be trans-cinnamaldehyde, which was bactericidal in the minimal inhibitory concentration (MIC) of $100\;\mu$g/ml against the strain. From the results of antibacterial activity of cinnamaldehyde and its derivatives, the acrolein group in the cinnamaldehyde was elucidated to be an essential element for the activity.

  • PDF

Formulation of a rational dosage regimen of ceftiofur hydrochloride oily suspension by pharmacokinetic-pharmacodynamic (PK-PD) model for treatment of swine Streptococcus suis infection

  • Luo, Wanhe;Wang, Dehai;Qin, Hua;Chen, Dongmei;Pan, Yuanhu;Qu, Wei;Huang, Lingli;Xie, Shuyu
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.41.1-41.14
    • /
    • 2021
  • Background: Our previously prepared ceftiofur (CEF) hydrochloride oily suspension shows potential wide applications for controlling swine Streptococcus suis infections, while the irrational dose has not been formulated. Objectives: The rational dose regimens of CEF oily suspension against S. suis were systematically studied using a pharmacokinetic-pharmacodynamic model method. Methods: The healthy and infected pigs were intramuscularly administered CEF hydrochloride oily suspension at a single dose of 5 mg/kg, and then the plasma and pulmonary epithelial lining fluid (PELF) were collected at different times. The minimum inhibitory concentration (MIC), minimal bactericidal concentration, mutant prevention concentration (MPC), post-antibiotic effect (PAE), and time-killing curves were determined. Subsequently, the area under the curve by the MIC (AUC0-24h/MIC) values of desfuroylceftiofur (DFC) in the PELF was obtained by integrating in vivo pharmacokinetic data of the infected pigs and ex vivo pharmacodynamic data using the sigmoid Emax (Hill) equation. The dose was calculated based on the AUC0-24h/MIC values for bacteriostatic action, bactericidal action, and bacterial elimination. Results: The peak concentration, the area under the concentration-time curve, and the time to peak for PELF's DFC were 24.76 ± 0.92 ㎍/mL, 811.99 ± 54.70 ㎍·h/mL, and 8.00 h in healthy pigs, and 33.04 ± 0.99 ㎍/mL, 735.85 ± 26.20 ㎍·h/mL, and 8.00 h in infected pigs, respectively. The MIC of PELF's DFC against S. suis strain was 0.25 ㎍/mL. There was strong concentration-dependent activity as determined by MPC, PAE, and the time-killing curves. The AUC0-24h/MIC values of PELF's DFC for bacteriostatic activity, bactericidal activity, and virtual eradication of bacteria were 6.54 h, 9.69 h, and 11.49 h, respectively. Thus, a dosage regimen of 1.94 mg/kg every 72 h could be sufficient to reach bactericidal activity. Conclusions: A rational dosage regimen was recommended, and it could assist in increasing the treatment effectiveness of CEF hydrochloride oily suspension against S. Suis infections.

Factors Affecting in Vitro Activity of LB20304, a New Flu-oroquinolone

  • Paek, Kyoung-Sook;Ahn, Mi-Jeong;Kim, Mu-Yong;Kim, In-Chull;Kwak, Jin-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 1996
  • LB20304 is a novel fluoroquinolone that exhibits a potent broad spectrum antibacterial activity against both gram-positve and gram-negative bacteria. The MICs (Minimal Inhibitory Concentration) of LB20304 were determined against both gram-positve and gram-negative bacteria under various conditions including several media, pHs, and inoculum concentrations. The in vitro activity of LB20304 was not significantly affected by the changes in testing conditions such as components of media and inoculum concentrations, but it was slightly reduced by acid condition. The MICs and MBCs (Minimal Bactericidal Concentration) of LB20304 against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were hardly affected by the presence of 50 % human serum, mouse serum, guinea pig serum or horse serum, and the MBCs were equal to or at most four-times higher than the MiCs. The activities of LB20304 were decreased by the presence of high concentraion of $Mg^{++}$ or human urine (pH, 5.5) in the test media. The frequencies of mutants resistant to LB20304 were similar to or lower than those found in ciprofloxacin and sparfloxacin.

  • PDF