• Title/Summary/Keyword: miniemulsion

Search Result 22, Processing Time 0.019 seconds

Optimization of Self-crosslinking Comonomer Composition of Polymer Binder for DTP Pigment Ink (DTP 안료 잉크용 고분자 바인더의 Self-crosslinking 공단량체 조성 최적화 연구)

  • Han, Minwoo;Kwon, Woong;Park, Seongmin;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • The previous study reported that the quaternary copolymer of MMA, BA, MAA, and NEA was expected to be a good monomer composition for a binder polymer with good rubbing fastness for digital textile printing(DTP) pigment ink. However, the rubbing fastness of the dyed fabric with the quaternary copolymer binder containing pigment ink is not enough to be commercially used. Therefore, this study aims to optimize MMA:BA:MAA:NEA composition for improved rubbing fastness. And the binder polymer with various MMA:BA:MAA:NEA compositions were synthesized using miniemulsion polymerization. The particle size, viscosity, molecular weight, and Tg of the synthesized binder were evaluated. And the color strength and rubbing fastness of the black pigment ink dyed cotton fabrics with the prepared binders were also evaluated. Then, the stiffness of undyed and dyed cotton fabrics were evaluated to investigate the changes in touch as the binder structure changes.

Color Strength and Fastness of Pigment Ink with Various Binder Monomer Compositions (바인더의 공중합체 조성에 따른 안료잉크의 발색성 및 견뢰도 연구)

  • Kwon, Woong;Lee, Minkyu;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.256-263
    • /
    • 2018
  • The binder polymers for digital textile printing(DTP) pigment inks were prepared using miniemulsion polymerization with various monomer compositions to study effects of monomer compositions on particle size distribution, average molecular weight, Tg, and color strength and rubbing fastness of the dyed fabrics with the prepared binder based pigment ink. The monomers used were MMA(Methyl methacrylate), BA(Butyl acrylate), MAA(Methacrylic acid), NMA(N-methylol acrylamide), NEA(N-ethylol acrylamide) and the ratios of the monomers were changed. The particle size was the smallest with 136nm when the MMA to BA weight ratio was 4:16 and the largest with 290nm when the MMA, BA, MAA, NEA ratio was 2.5:17:0.25:0.25. However, the glass transition temperature was lowest with $-41.90^{\circ}C$ and the color strength and rubbing fastness of the resulting sample were the best when the MMA, BA, MAA, NEA ratio was used. This suggested that the introduction of the NEA monomer to the binder polymer for the pigment ink could be an efficient way to enhance the rubbing fastness of the DTP pigment inks present.

Investigation on Rubbing Fastness of Pigment Ink with Polymer Binders having Various Comonomer Compositions (바인더 단량체 조성 변화에 따른 안료 잉크의 마찰견뢰도 연구)

  • Han, Minwoo;Kwon, Woong;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.77-87
    • /
    • 2019
  • To improve rubbing fastness of the printed fabrics, the binder polymers for Digital Textile Printing(DTP) pigment inks were synthesized with miniemulsion polymerization using various acrylic monomers, which are MMA(Methyl methacrylate), BA(Butyl acrylate), and Self-crosslinking monomers, such as NEA(N-Ethylol acrylamide) and MAA (Methacrylic acid). The acrylic monomer compositions were varied when synthesizing the binder polymers and their particle size distributions, average molecular weights, and Tgs were investigated. The prepared binder polymers were applied to prepare Cyan, Black, Yellow and Magenta pigment ink for DTP and the prepared inks were used to dye cotton fabrics. Then, color strength, and rubbing fastness were also investigated to study the effect of the comonomer compositions of the binder polymer on the color strength and rubbing fastness of the resulting pigment inks.

Nanoencapsulations of Paraffin Wax by Miniemulsion Polymerization and Their Thermal Properties as Phase Change Materials (미니에멀젼 중합에 의한 파라핀 왁스의 나노캡슐화 및 상변환물질로서의 열적 특성)

  • Shin, Dae Cheol;Lee, Kyungwoo;Kim, Jeong Soo
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • Encapsulation of a paraffin wax core as a phase change material with polystyrene shell and the its thermal characteristics caused by the encapsulation were studied. For the nanoencapsulation, the miniemulsion polymerization method was selected. The factors affecting the thermal properties of prepared nanocapsule particles of phase change material were analysed in aspect of the structure of crosslinking agents, amounts of surfactant, ratio of paraffin wax to monomer, and hydrophilicity of initiators. It was assumed that Oswald ripening plays the most important role in the changes of particle size, particle morphology, and thermal capacity of nanocapsule core. It was elucidated that the thermal capacity was also dependent on the hydrophilicity and crosslinking density of polystyrene shell components.

Methods to Formulate Waterborne Conjugated Polymer Nanoparticles (수분산 공액고분자 나노입자의 합성 방법론)

  • Seungju Kang;Boseok Kang
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • A conjugated polymer is the next-generation emerging semiconductor material that can be applied in various fields, from organic electronics to biomedical applications. However, its low solubility in an aqueous medium has made the use of toxic organic solvents inevitable, thereby leading to formulation of conjugated polymers in the form of waterborne nanoparticles. This review paper discusses two principles of nanoparticle formation and representative methods for synthesizing conjugated polymer nanoparticles.

Fabrication Technique of Nanoemulsion Using Silicone Oil and Application as Hydrophilic Ophthalmic Lens

  • Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.315-320
    • /
    • 2024
  • In order to maximize the function and increase the compatibility of silicone hydrogel lens, this study compared and analyzed the properties of Amino modified silicone oil using mini and microemulsion technique, respectively. Optical and physical properties were evaluated by spectral transmittance, refractive index, water content, oxygen transmittance and contact angle measurements to evaluate the performance of the manufactured hydrogel lens. The spectral transmittance results revealed the copolymerization method lens showed 31 % of the visible light area, which did not satisfy the basic optical properties. However, the lens using the mini and microemulsion materials showed more than 90 % of the visible light area, satisfying the optical characteristics. In addition, all physical properties were superior to a basic hydrogel lens. The mini and microemulsion techniques effectively improved the stability and function of the ophthalmic hydrogel lens and are considered a promising ways of manufacturing an ophthalmic hydrogel contact lens with increased compatibility and stability.

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Preparation and Study of Bioactive Characteristics of Alginate Sponge Containing Quercetin-encapsulated Nanocapsules (쿼세틴 담지 나노캡슐을 함유한 알지네이트 스펀지의 제조 및 생리활성 특성)

  • Kim, Woo Jin;Xu, Shuwen;Noh, Hyun Soo;Lee, Hyun Ju;Jeon, Jae Woo;Ghim, Han Do
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.341-353
    • /
    • 2019
  • Quercetin is one of flavonoids widely distributed in the plants and well known to have antioxidants, antiinflammatory, antimicrobial properties. In this study, alginate sponge containing quercetin-encapsulated nanocapsules was prepared by miniemulsion polymerization, dyring/crosslinking method and their bioactive characteristics were investigated. Alginate sponge containing quercetin-encapsulated nanocapsules were evaluated using a field emission scanning electron microscope(FE-SEM), a high performance liquid chromatography, cell viability, DPPH radical scavenging activity and antibacterial activity. The study indicates that alginate sponge containing quercetin-encapsulated nanocapsules had significant antioxidant, antiinflammatory and antibacterial activities. This study suggested that alginate sponge containing quercetin-encapsulated nanocapsules can be a potential candidate for medical materials.

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.