• Title/Summary/Keyword: minerals and rocks

검색결과 478건 처리시간 0.03초

경기육괴 남서부 유구 지역 금계산에 분포하는 각섬암류 내 각섬석의 격자선호방향 (Lattice Preferred Orientation of Amphibole in Amphibole-rich Rocks from Mt. Geumgye, Yugu, Gyeonggi Massif, South Korea)

  • 김준하;정해명
    • 광물과 암석
    • /
    • 제35권3호
    • /
    • pp.259-271
    • /
    • 2022
  • 광물의 격자구조가 특정한 방향성을 보이는 격자선호방향은 광물의 변형 조건에 따라 다르기 때문에, 해당 광물과 이를 포함한 암석의 변형 조건을 연구하는데 있어 유용하다. 이번 연구에서는 경기육괴의 남서부지역에 위치한 유구읍 추계리 금계산 일대의 각섬암류를 채취하여 암석내부 각섬석과 장석의 격자선호방향을 후방산란전자회절 기기를 사용하여 분석하였다. 분석결과 유구지역의 각섬석에서는 type IV와 type I 두가지 격자선호방향이 관찰되었다. 유구지역의 각섬암류 내 각섬석은 격자선호방향에 관계없이 강체회전에 의해 변형을 받은것으로 보이며, 암석의 변형정도가 결정입도와 격자선호방향에 영향을 준 것으로 생각된다. 각섬석의 결정입도가 커서 변형을 가장 작게 받은것으로 생각되는 시료에서는 각섬석이 강한 type I 격자선호방향을 보여주었다. 이에 반해, 각섬석의 결정입도가 작아 고변형을 받은 것으로 생각되는 시료들에서는 각섬석이 약한 type IV 격자선호방향을 보여 주었다. 유구지역에서 관찰되는 다양한 암석의 변형정도는 각섬암류와 인접해있는 페리도타이트에서도 관찰된 바 있어, 유구지역이 다양한 수준의 변형을 받았음을 지시한다.

Characterization of Hydroxy-interlayered Mineral in Non-Andic Soils from Jeju Island

  • Lee, Gyoo-Ho;Yungoo Song;Ha, Dae-Ho;Moon, Hi-Soo;Moon, Ji-Won
    • 한국광물학회:학술대회논문집
    • /
    • 한국광물학회.한국암석학회 2001년도 공동학술발표회 논문집
    • /
    • pp.45-47
    • /
    • 2001
  • Jeju island is composed mainly of volcanic rocks such as basalts, trachytic andesites, tracytes, and sedimentary rocks. About 80% of Jeju soils are classified as Andisols. The amount of annual precipitation in Jeju island is about 1872mm, which is 1.5 times the annual precipitation of south Korea. There is a significant difference In amount of precipitation with regions even within Jeju island. In study area, the annual amount of rainfall is about 1280mm, the lowest in Jeju island while south part of the island has the annual precipitation of 2056mm, though they are only tens of kilometers apart. The parent materials of soils in study area are pyroclastic rocks and tuffs. The soils of non-andic properties have developed in this area since pedogenic process of pyroclastic materials is strongly influenced by climatic factor, especially precipitation. In order to investigate the mineralogical characteristics of soils, X-ray analysis for <0.2 and 2-0.2$\mu\textrm{m}$ size fractions was performed with ethylene glycol solvation, K-, Mg-saturation, heat treatment(110, 330, 550$^{\circ}C$). Acid-oxalate and DCB(sodium hydrosulfite, sodium citrate, sodium bicarbonate) dissolution method was used to assess tile total amounts or Al, si, and hydroxy interlayer or 2:1 layer silicates. XRD was also applied for samples treated with DCB only and DCB-oxalate sequentially. XRD patterns showed that 2:1 and 1:1 layer silicates were found, which are different from soils of Andisols. Vermiculite, chlorite, hydroxy interlayered minreals, and interstratified minerals(vermiculite/chlorite) were observed in 2-0.2$\mu\textrm{m}$ size fractions. After DCB treatments, ethylene glycolated samples with Mg-saturation showed expanded d-spacing, suggesting the possibility of hydroxy interlayered minerals. The amounts of hydroxy interlayered minerals increased in surface soil. Unlike Andisols, short range ordered minerals such as allophane, imogolite and gibbsite were hardly found. Mica and kaolinte existed in small amounts. Results are summarized in Fig 1 and Fig. 2.

  • PDF

콘크리트 장기 안정성을 위한 골재의 선택 (Selection of Suitable Aggregates for Long-term Stability of Concrete)

  • 양동윤;이동영
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

대보화강암내 함우라늄 광물의 산출특징과 존재형태의 중요성 (Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species)

  • 추창오
    • 한국광물학회지
    • /
    • 제15권1호
    • /
    • pp.11-21
    • /
    • 2002
  • 지하수 중 우라늄이 높은 농도로 포함되어 있는 대보화강암 지역의 대수층구간에서 회수된 시추 코아에서 우라늄광물의 산출과 존재형태를 연구하였다. 우라늄광물은 일차적 기원으로 산출되며, 저어콘, 모나자이트, 제노타임 등과 같은 부성분 광물 내에 함유되는데 대부분 미량성분이나 포획물로 들어있다. 우라늄 광물은 $1~2mu$m 이하의 미림질의 결정으로 산출되므로 후방산란 전자영상(BSE)으로서도 구분이 매우 어렵다. 우라늄 광물을 포함하는 부성분 광물에서 이들이 빠져나간 용해동공이나 용해조직이 흔하게 관찰되는 것으로 보아 이들은 부분적으로 지하수로 용해되어 빠져나간 것으로 판단된다. 모암내의 우라늄함량과 지하수중 우라늄의 함량이 서로 별다른 관련성을 보이지 않는 사실은 우라늄광물이 용해될 수 있는 수리화학적 환경 외에도 우라늄 광물의 산출특징과 존재형태도 중요한 요소임을 지시해 준다.

Petrographic Study of Mn-bearing Gondite (Birimian) of Téra Area in the Leo-Man Shield (West African Craton) in Niger.

  • Hamidou GARBA SALEY;Moussa KONATE;Olugbenga Akindeji OKUNLOLA
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.25-39
    • /
    • 2024
  • The Téra manganese deposit represents the most significant manganese mineralization discovered in Niger up today. The main host rocks of this ore are gondites, which are a garnet and quartz rich metamorphic rocks. The supergene weathering developed an alteration profile on these gondites. This study aims to identify the mineralogical composition of gondites and associated rocks, in order to highlight the origine of rocks and the manganese enrichment. The methodological approach adopted involved a field study followed by polarizing microscopic analysis using transmitted and reflected lights. Additionally, quantitative X-ray diffraction (XRD) analysis was performed to assess the manganese ore minerals present in the gondite and associated rocks, including mica schists, amphibolites, and quartzites. The petrographic study revealed a paragenesis characterized by the presence of kyanite, staurolites, garnets and plagioclases that are generally poikiloblasts with quartz and opaque minerals inclusions, emphasizing the internal schistosity which is planar, helicitic or microfolded. These features indicate a prograde metamorphism until high-pressure amphibolite facies conditions. These conditions are followed by greenschist facies conditions marked by calcite, epidote, muscovite, chlorite and muscovite assemblage which emphasizes the vertical tectonics. Depending on the alteration process, the manganese ore exhibit a granular texture at the bottom of the gondite hills, transitioning to a colloform texture towards the top, passing through the epigenization and replacement texture. The XRD analysis further revealed that the studied rocks originated from a volcano-sedimentary complex, characterized by alternating marly, arenaceous and pelitic sequences associated with submarine exhalations.

영동분지에 분포하는 백악기 퇴적암류의 재자화 (Remagnetization of the Cretaceous Sedimentary Rocks in the Yeongdong Basin)

  • 도성재;조윤영;석동우
    • 자원환경지질
    • /
    • 제29권2호
    • /
    • pp.193-209
    • /
    • 1996
  • Paleomagnetic and rock-magnetic data have been obtained from the Cretaceous rocks (Yeongdong Group, volcanic rock, and intrusive rocks) which are exposed in the Yeongdong Basin. The characteristic remanent directions of these rocks, which are mainly carried by magnetite and hematite of single and pseudo-single domain sizes, are normally magnetized (Yeongdong Group: $D/I=29.6/59.0^{\circ}C$, k=75.7, ${\alpha}_{95}=3.3^{\circ}$, N=25 sites, paleopole at $198.0^{\circ}E$, $66.4^{\circ}N$, K=46.1, $A_{95}=4.3^{\circ}$; volcanic rock: $D/I=352.8/44.1^{\circ}$, k=44.2, ${\alpha}_{95}=18.8^{\circ}$, N=3 sites, paleopole at $340.0^{\circ}E$, $78.8^{\circ}N$, $K=49.8^{\circ}E$, $A_{95}=17.6^{\circ}$X>; intrusive rocks: $D/I=358.4/51.9^{\circ}C$, k=20.0, ${\alpha}_{95}=13.8^{\circ}$, N=7 sites, paleopole at $338.1^{\circ}E$, $86.8^{\circ}N$, K=13.5, $A_{95}=17.1^{\circ}$). The stepwise unfolding of the characteristic remanent magnetization (ChRM) of the Yeongdong Group reveals that a maximum value of k is observed at 60% of unfolding with $D/I=13.0/58.6^{\circ}$ (k=124.62, ${\alpha}_{95}2.6^{\circ}$) indicating that the ChRM was aquired during ti1ting of the strata. This remagnetized ChRM in the sedimentary strata is due to acquisition of geomagnetic field direction at the time of formation of authigenic magnetic minerals, although it is not totally ruled out that the formation of authigenic magnetic minerals was affected indirect1y by the elevated temperature originated from the volcanic and intrusive rocks which intruded between Late Cretaceous and Early Tertiary.

  • PDF

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

지하매질에서의 방사성핵종흡착: 단일광물의 역할 (Radionuclide Sorption in the Geosphere: Role of Single Minerals)

  • Cho, Young-Hwan;Hyun, Sung-Pil;Hahn, Pilsoo
    • 한국광물학회:학술대회논문집
    • /
    • 한국광물학회.한국암석학회 2001년도 공동학술발표회 논문집
    • /
    • pp.40-40
    • /
    • 2001
  • The sorption behavior of Cs(I), Sr(II), and U(VI) on representative single minerals(oxide and clay) and rocks were comparatively studied by using batch type sorption experiment. The effects of pH, ionic strength and the sorption mechanism were also discussed. It was found that mineral structure played as a main factor governing the sorption characteristics of Cs(I), Sr(II). The sorption of Cs(I) and Sr(II) on minerals showed ionic strength-dependency, which is a indirect sign of weak binding between metal cation and mineral surfaces. However, the sorption behavior of U(VI) was quite different compared with that of Cs(I), and Sr(II). Fe-oxide minerals showed strong tendency for U(VI) sorption, dominating the sorption in the composite/mixture systems. The surface characteristics which arise from mineral structure, and the affinity of metal ions to the sorption sites of minerals are the key to understand the role of minerals in the radionuclide sorption.

  • PDF

부산시(釜山市) 구월산(九月山)의 풍화물중(風化物中) 점토광물(粘土鑛物)의 특성(特性) 및 성인(成因) (Characteristics and Genesis of the Clay Minerals in Weathering Products from the Guweol Mountain Area, Pusan)

  • 황진연;장명익
    • 한국토양비료학회지
    • /
    • 제27권3호
    • /
    • pp.158-167
    • /
    • 1994
  • 부산시(釜山市) 구월산(九月山)의 안산암유(安山岩類) 암석(岩石) 분포지역(分布地域)의 풍화암(風化岩)에서 토양(土壤)에 이르는 여러가지 풍화산물(風化産物) 중(中)의 구성광물(構成廣物) 특히 점토광물(粘土鑛物)에 대한 산상(産狀), 특성(特性) 및 형성과정(形成過程)을 검토(檢討)한 결과(結果)는 대체적으로 다음과 같이 요약(要約)된다. 1. 부산시(釜山市) 구월산(九月山) 지역(地域)에서 안산암유(安山岩類)를 모암(母岩)으로 하는 풍화토(風化土)에서는 카오리나이트 및 할로이사이트의 카오린광물(鑛物)과 $12{\AA}$$14{\AA}$에 X-선회절선을 나타내는 점토광물(粘土鑛物)들이 주(主)로 나타난다. 2. $12{\AA}$-광물(鑛物)은 운모(雲母)/버미큐라이프 혼합층광물(混合層鑛物)에 가까운 것으로 나타났으며, 이는 입자(粒子)가 다른 점토광물(粘土鑛物)에 비해 큰 것으로 운모(雲母)나 각섬석(角閃石)이 버미큐라이트로 변하는 중간단계(中間段階)에서 형성(形成)된 것으로 생각된다. 3. 이 지역(地域)에 나타나는 $14{\AA}$-광물(鑛物)로는 버미큐라이트와 스멕타이트의 중간적(中間的)인 특성(特性)을 나타내는 버미큐라이트/스멕타이트 혼합층광물(混合層鑛物)에 해당(該當)되는 것과 Al-버미큐라이트에 해당(該當)되는 것이 있다. 이들 광물(鑛物)도 풍화(風化)에 의해 카오리나이트로 변하는 중간단계(中間段階)에서 형성(形成)된 것으로 사료(思料)된다. 4. 카오린광물(鑛物)로는 $10{\AA}$$7{\AA}$의 할로이사이트 및 카오리나이트가 포함(包含)된다. 이 중(中)의 할로이사이트는 본(本) 지역(地域)에서 나타나는 점토광물(粘土鑛物) 중(中)에서 가장 입자(粒子)가 작은 것으로 나타나며 튜브의 길이도 비교적 짧은 것이 많다. 따라서 미립질일수록 하로이사이트의 함량이 많아지는 경향이 있다. 풍화(風化)가 아주 많이 진행(進行)된 풍화토(風化土)에는 카오리나이트가 상대적으로 많은 경향(傾向)을 나타낸다.

  • PDF

자연환경 변화와 광물의 역할

  • 김수진
    • 한국암석학회:학술대회논문집
    • /
    • 한국암석학회.한국광물학회 2000년도 공동학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2000
  • The earth environment consists of four spheres : geosphere, hydrosphere, atmosphere and biosphere. The geosphere consists mostly of minerals. It, however, contains some water and air in its shallow depth. Although hydrosphere and atmosphere consist predominantly of water and air, respectively, both contain some minerals. The biosphere consisting of various organisms is present in the interfaces of geosphere, hydrosphere and atmosphere. The natural environment of the earth is continuously changing by the interaction of four spheres. It suggests that out relevant environmental problems can not be revolved without understanding the natural relationship of these four spheres. Minerals in our environment are very important because they are the main constituent materials of the earth and they control our environment. The roles of minerals in our environment have not been understood even in the scientific society. Thus their roles have been neglected. Review of studies on the environmental mineralogy so far made at our laboratory and others show that minerals control the environment in various ways. Minerals neutralize the acid water as well as acid rain. Minerals in soils and rocks are major neutralizer of the acid rain. Salinization of sea water is attributed to the ionic substitution between minerals and sea water. Some minerals control the humidity of the air. Corals, the products of biomineralization, are the main carbon controller of the air. Minerals also adsorb heavy metals, organic pollutants and radioactive nuclides. Such remarkable functions for controlling the environment come from the mineral-water reaction and biomineralization. All these phenomena are subjects of the environmental mineralogy, a new field of earth science.

  • PDF