DOI QR코드

DOI QR Code

Lattice Preferred Orientation of Amphibole in Amphibole-rich Rocks from Mt. Geumgye, Yugu, Gyeonggi Massif, South Korea

경기육괴 남서부 유구 지역 금계산에 분포하는 각섬암류 내 각섬석의 격자선호방향

  • Kim, Junha (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jung, Haemyeong (School of Earth and Environmental Sciences, Seoul National University)
  • 김준하 (서울대학교 지구환경과학부) ;
  • 정해명 (서울대학교 지구환경과학부)
  • Received : 2022.08.16
  • Accepted : 2022.09.13
  • Published : 2022.09.30

Abstract

Lattice preferred orientation (LPO), which shows a specific lattice-orientation of minerals, is affected by the deformation conditions of minerals. Because of this reason, LPO is very useful to study the deformation conditions of the minerals and the rocks. In this study, we collected amphibole-rich rocks from the Geumgye Mountain, Chugye-ri, Yugu-eup, Chungcheongnamdo, located in the southwestern part of the Gyeonggi Massif, and analyzed the LPO of amphibole and plagioclase using electron backscattered diffraction. Two types of LPOs of amphibole, type I and type IV, were observed in Yugu amphibole-rich rocks. Our data suggest that the amphibole-rich rocks in Yugu were deformed by rigid body rotation regardless of the LPOs and grain size of amphibole, and the LPOs are considered to have been affected by the degree of deformation (i.e. strain). In the low strained amphibole-rich rock, a strong type I LPO and a large grain size of amphibole were observed. On the other hand, in the highly strained amphibole-rich rocks, a weak type IV LPO and a small grain size of amphibole were observed. The various degree of deformation observed in the Yugu amphibole-rich rocks were also observed in the adjacent peridotites, indicating that the rocks in Yugu experienced various levels of deformation.

광물의 격자구조가 특정한 방향성을 보이는 격자선호방향은 광물의 변형 조건에 따라 다르기 때문에, 해당 광물과 이를 포함한 암석의 변형 조건을 연구하는데 있어 유용하다. 이번 연구에서는 경기육괴의 남서부지역에 위치한 유구읍 추계리 금계산 일대의 각섬암류를 채취하여 암석내부 각섬석과 장석의 격자선호방향을 후방산란전자회절 기기를 사용하여 분석하였다. 분석결과 유구지역의 각섬석에서는 type IV와 type I 두가지 격자선호방향이 관찰되었다. 유구지역의 각섬암류 내 각섬석은 격자선호방향에 관계없이 강체회전에 의해 변형을 받은것으로 보이며, 암석의 변형정도가 결정입도와 격자선호방향에 영향을 준 것으로 생각된다. 각섬석의 결정입도가 커서 변형을 가장 작게 받은것으로 생각되는 시료에서는 각섬석이 강한 type I 격자선호방향을 보여주었다. 이에 반해, 각섬석의 결정입도가 작아 고변형을 받은 것으로 생각되는 시료들에서는 각섬석이 약한 type IV 격자선호방향을 보여 주었다. 유구지역에서 관찰되는 다양한 암석의 변형정도는 각섬암류와 인접해있는 페리도타이트에서도 관찰된 바 있어, 유구지역이 다양한 수준의 변형을 받았음을 지시한다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. 2020R1A2C2003765). 논문을 심사하여 유익한 코멘트를 해주신 강지훈 교수님과 익명의 심사자에게 감사드립니다.

References

  1. Allison, I. and Tour, T.E.L., 1977, Brittle deformation of hornblende in a mylonite: a direct geometrical analogue of ductile deformation by translation gliding. Canadian Journal of Earth Sciences, 14, 1953-1958. https://doi.org/10.1139/e77-166
  2. Almqvist, B.S. and Mainprice, D., 2017, Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 55, 367-433. https://doi.org/10.1002/2016RG000552
  3. Aspiroz, M.D., Lloyd, G. and Fernandez, C., 2007, Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain). Journal of Structural Geology, 29, 629-645. https://doi.org/10.1016/j.jsg.2006.10.010
  4. Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y. I. and Hisada, K. I., 2008, Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: implications for its origin and hydration process. Island Arc, 17, 485-501. https://doi.org/10.1111/j.1440-1738.2008.00633.x
  5. Babaie, H.A. and La Tour, T.E., 1994, Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone. Tectonophysics, 229, 19-30. https://doi.org/10.1016/0040-1951(94)90003-5
  6. Bachmann, F., Hielscher, R. and Schaeben, H, 2011, Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm. Ultramicroscopy, 111, 1720-1733. https://doi.org/10.1016/j.ultramic.2011.08.002
  7. Barruol, G. and Kern, H., 1996, Seismic anisotropy and shearwave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone-experimental and calculated data. Physics of the Earth and Planetary Interiors, 95, 175-194. https://doi.org/10.1016/0031-9201(95)03124-3
  8. Berger, A. and Stunitz, H., 1996, Deformation mechanisms and reaction of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics, 257, 149-174. https://doi.org/10.1016/0040-1951(95)00125-5
  9. Brodie, K.H. and Rutter, E.H., 1985, On the relationship between deformation and metamorphism, with special reference to the behavior of basic rocks. In Metamorphic reactions. Springer, New York, NY, 138-179.
  10. Bunge, H., 1982, Texture Analysis in Materials Science: Mathematical Models. London: Butterworths.
  11. Cao, S., Liu, J. and Leiss, B., 2010, Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32, 606-622. https://doi.org/10.1016/j.jsg.2010.03.012
  12. Cho, M. and Kim, H., 2005, Petrogenesis of the Yugu spinel harzburgite in western Gyeonggi Massif, South Korea. In International Eclogite Conference, 150, 26.
  13. Dai, L.Q., Zhao, Z.F. and Zheng, Y.F., 2014, Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochemistry, Geophysics, Geosystems, 15, 3762-3779. https://doi.org/10.1002/2014GC005486
  14. Dhuime, B., Bosch, D., Bodinier, J.L., Garrido, C.J., Bruguier, O., Hussain, S.S. and Dawood, H., 2007, Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth and Planetary Science Letters, 261, 179-200. https://doi.org/10.1016/j.epsl.2007.06.026
  15. Dilek, Y. and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin, 123, 387-411.
  16. Fountain, D.M. and Salisbury, M.H., 1981, Exposed crosssections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56, 263-277. https://doi.org/10.1016/0012-821X(81)90133-3
  17. Getsinger, A., Hirth, G., Stunitz, H. and Goergen, E., 2013, Influence of water on rheology and strain localization in the lower continental crust. Geochemistry, Geophysics, Geosystems, 14, 2247-2264. https://doi.org/10.1002/ggge.20148
  18. Getsinger, A. and Hirth, G., 2014, Amphibole fabric formation during diffusion creep and the rheology of shear zones. Geology, 42, 535-538. https://doi.org/10.1130/G35327.1
  19. Hacker, B.R. and Christie, J.M., 1990, Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite. The Brittle-Ductile Transition in Rocks, 56, 127-147. https://doi.org/10.1029/GM056p0127
  20. Imon, R., Okudaira, T. and Kanagawa, K., 2004, Development of shape-and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. Journal of Structural Geology, 26, 793-805. https://doi.org/10.1016/j.jsg.2003.09.004
  21. Ishimaru, S., Arai, S., Ishida, Y., Shirasaka, M. and Okrugin, V.M., 2007, Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka. Journal of Petrology, 48, 395-433.
  22. Ji, S., Salisbury, M.H. and Hanmer, S., 1993, Petrofabric, Pwave anisotropy and seismic reflectivity of high-grade tectonites. Tectonophysics, 222, 195-226. https://doi.org/10.1016/0040-1951(93)90049-P
  23. Ji, S., Shao, T., Michibayashi, K., Long, C., Wang, Q., Kondo, Y., Zhao, W., Wang, H. and Salisbury, M.H., 2013, A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. Journal of Geophysical Research: Solid Earth, 118, 4699-4728. https://doi.org/10.1002/jgrb.50352
  24. Jung, H., 2017, Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review, Geosciences Journal, 21, 985-1011. https://doi.org/10.1007/s12303-017-0045-1
  25. Kern, H., Popp, T., Gorbatsevich, F., Zharikov, A., Lobanov, K. and Smirnov, Y.P., 2001, Pressure and temperature dependence of Vp and Vs in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics, 338, 113-134. https://doi.org/10.1016/S0040-1951(01)00128-7
  26. Kim, H., Cho, M. and Kim, J., 2003, Evidence for mantle deformation from the Yugu Peridotite: a preliminary study. Geol. Soc. Korea, 23.
  27. Kim, J. and Jung, H., 2019, New crystal preferred orientation of amphibole experimentally found in simple shear. Geophysical Research Letters, 46.
  28. Kim, J. and Jung, H., 2020, Lattice preferred orientation (LPO) and seismic anisotropy of amphibole in Gapyeong amphibolites. Korean Journal of Mineralogy and Petrology, 33, 259-272. https://doi.org/10.22807/KJMP.2020.33.3.259
  29. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.C., Rajesh, V.J., Kim, C.B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  30. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature communications, 6.
  31. Kruse, R. and Stunitz, H., 1999, Deformation mechanisms and phase distribution in mafic high-temperature mylonites from the Jotun Nappe, southern Norway. Tectonophysics, 303, 223-249. https://doi.org/10.1016/S0040-1951(98)00255-8
  32. Leake, B.E., 1978, Nomenclature of amphiboles. American Mineralogist, 63, 1023-1052.
  33. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34. https://doi.org/10.1016/S0301-9268(02)00196-1
  34. Mainprice, D. and Nicolas, A., 1989, Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11, 175-189. https://doi.org/10.1016/0191-8141(89)90042-4
  35. Nyman, M.W., Law, R.D. and Smelik, E.A., 1992, Cataclastic deformation mechanism for the development of core-mantle structures in amphibole. Geology, 20, 455-458. https://doi.org/10.1130/0091-7613(1992)020<0455:CDMFTD>2.3.CO;2
  36. Oh, C.W., Lee, J.Y., Yengkhom, K.S., Lee, B.C. and Ryu, H.I., 2018, Neoproterozoic igneous activity and PermoTriassic metamorphism in the Gapyeong area within the Gyeonggi Massif, South Korea, and theirimplication for the tectonics of northeastern Asia. Lithos, 322, 1-19. https://doi.org/10.1016/j.lithos.2018.09.032
  37. Panozzo, R., 1984, Two-dimensional strain from the orientation of lines in a plane. Journal of structural geology, 6, 215-221. https://doi.org/10.1016/0191-8141(84)90098-1
  38. Park, G., Park, J.W., Heo, C.H. and Kim, J., 2022, Distribution of mantle-melt interaction zone: A petrological exploration tool for podiform chromitite deposits in the Kalaymyo ophiolite, Myanmar. Journal of Geochemical Exploration, 232, 106878. https://doi.org/10.1016/j.gexplo.2021.106878
  39. Park, M. and Jung, H., 2017, Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709, 55-68. https://doi.org/10.1016/j.tecto.2017.04.017
  40. Payot, B.D., Arai, S., Tamayo Jr, R.A. and Yumul Jr, G.P., 2009, What underlies the Philippine island arc? clues from the Calaton Hill, Tablas island, Romblon (Central Philippines). Journal of Asian Earth Sciences, 36, 371-389. https://doi.org/10.1016/j.jseaes.2009.07.001
  41. Pearce, M.A., Wheeler, J. and Prior, D.J., 2011, Relative strength of mafic and felsic rocks during amphibolite facies metamorphism and deformation. Journal of Structural Geology, 33, 662-675. https://doi.org/10.1016/j.jsg.2011.01.002
  42. Polat, A., Fryer, B.J., Samson, I.M., Weisener, C., Appel, P. W., Frei, R. and Windley, B.F., 2012, Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenaesset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean. Precambrian Research, 214, 124-153.
  43. Powell, W., Zhang, M., O'Reilly, S.Y. and Tiepolo, M., 2004, Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 75, 141-171. https://doi.org/10.1016/j.lithos.2003.12.017
  44. Prouteau, G., Scaillet, B., Pichavant, M. and Maury, R., 2001, Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, 197-200. https://doi.org/10.1038/35065583
  45. Ranalli, G. and Murphy, D.C., 1987, Rheological stratification of the lithosphere. Tectonophysics, 132, 281-295. https://doi.org/10.1016/0040-1951(87)90348-9
  46. Rudnick, R.L., Gao, S., Holland, H.D. and Turekian, K.K., 2003, Composition of the continental crust. The crust, 3, 1-64.
  47. Santana, L.V., McLeod, C.L., Blakemore, D., Shaulis, B. and Hill, T., 2020, Bolivian hornblendite cumulates: Insights into the depths of Central Andean arc magmatic systems. Lithos, 370, 105618.
  48. Siegesmund, S., Takeshita, T. and Kern, H., 1989, Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics, 157, 25-38. https://doi.org/10.1016/0040-1951(89)90338-7
  49. Skemer, P., Katayama, B., Jiang, Z.T. and Karato, S., 2005, The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics, 411, 157-167. https://doi.org/10.1016/j.tecto.2005.08.023
  50. Smith, D.J., Petterson, M.G., Saunders, A.D., Millar, I.L., Jenkin, G.R.T., Toba, T., Naden, J. and Cook, J.M., 2009, The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 158, 785-801. https://doi.org/10.1007/s00410-009-0410-9
  51. Um, S.H. and Lee, M.S., 1963, Explanatory text of the geological map of tae hung sheet, Geological survey of Korea.
  52. Van der Pluijm, B.A. and Marshak, S., 2004, Earth structure. New York.
  53. Woo, Y.K., Choi, S.W. and Park, K.H., 1991, Genesis of talc ore deposits in the Yesan area of Chungnam, Korea. Economic and Environmental Geology, 24, 363-378.
  54. Wright, S.I., Nowell, M.M. and Field, D.P., 2011, A review of strain analysis using electron backscatter diffraction. Microscopy and microanalysis, 17, 316-329. https://doi.org/10.1017/S1431927611000055