• Title/Summary/Keyword: mineralogical characteristic

Search Result 67, Processing Time 0.026 seconds

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Hydrothermal Synthesis of Kaolinite and Change of Its Properties (캐올리나이트의 수열합성 및 특성변화)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Kaolinite was synthesized from amorphous $SiO_2$ and $Al(OH)_3{\cdot}xH_{2}O$ as starting materials by hydrothermal reaction conducted at $250^{\circ}C$ and $30\;kg/cm^2$. The acidity of the solution was adjusted at pH 2. The synthesized kaolinite was characterized by XRD, IR, NMR, FE-SEM, TEM and EDS to clarify the formational process according to the reaction time from 2 to 36 hours. X-ray diffraction patterns showed after 2 h of reaction time, the starting material amorphous $Al(OH)_3{\cdot}xH_{2}O$ transformed to boehmite (AlOOH) and after the reaction time 5 h, the peaks of boehmite were observed to be absent thereby indicating the crystal structure is partially destructed. Kaolinite formation was identified in the product obtained after 10 h of reaction and the peak intensity of kaolinite increased further with reaction time. The results of TGA and DTA revealed that the principal feature of kaolinite trace are well resolved. TGA results showed 13 wt% amount of weight loss and DTA analysis showed that exothermic peak of boehmite observed at $258^{\circ}C$ was decreased gradually and after 10 h of reaction time, it was disappeared. After 5 h of the reaction time, the exothermicpeak of transformation to spinel phase was observed and the peak intensiy increased with reaction time. The results of FT-IR suggested a highly ordered kaolinite was obtained after 36 hours of reaction. It was identified by the characteristic hydroxide group bands positioned at 3,696, 3670, 3653 and $3620\;cm^{-1}$. The development of the hydroxyl stretching between 3696 and $3620\;cm^{-1}$, depends on the degree of order and crystalline perfection. TEM results showed that after 15 h reaction time, curved platy kaolinite was observed as growing of (001) plane and after 36 h, the morphology of synthetic kaolinite exhibited platy crystal with partial polygonal outlines.

Sulfide Chimney from the Cleft Segment, Juan de Fuca Ridge: Mineralogy and Fluid Inclusion (Juan de Fuca 해령 Cleft Segment에서 회수된 황화물 침니: 광물조성 및 유체포유물)

  • 윤성택;허철호;소칠섭;염승준;이경용
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In order to elucidate the growth mechanism of sulfide chimney formed as a result of seafloor hydrothermal mineralization, we carried out the mineralogical and fluid inclusion studies on the inactive, sulfide- and silica-rich chimney which has been recovered from a hydrothermal field in the Cleft segment of the Juan de Fuca Ridge. According to previous studies, many active and inactive vents are present in the Cleft segment. The sulfide- and silica-rich chimney is composed of amorphous silica, pyrite, sphalerite and wurtzite with minor amounts of chalcopyrite and marcasite. The interior part of the chimney is highly porous and represents a flow channel. Open spaces within chimneys are typically coated with colloform layers of amorphous silica. The FeS content of Zn-sulfides varies widely from 13.9 to 34.3 mole% with Fe-rich core and Fe-poor rims. This variation possibly reflects the change of physicochemical characteristics of hydrothermal fluids. Chemical and mineralogical compositions of the each growth zone are also varied, possibly due to a thermal gradient. Based on the microthermometric measurements of liquid-rich, two-phase inclusions in amorphous silica that was precipitated in the late stage of mineralization, minimum trapping temperatures are estimated to be about 1140 to 145$^{\circ}$C with the salinities between 3.2 and 4.8 wt.% NaCI equiv. Although the actual fluid temperatures of the vent are not available, this study suggests that the lowtemperature conditions were predominant during the mineralization in the hydrothermal field at Cleft segment. Comparing with the previously reported chimney types, the morphology, colloform texture, bulk chemistry, and a characteristic mineral assemblage (pyrite + marcasite + wurtzite + amorphous silica) of this chimney indicate that the chimney have been formed from a relatively low-temperature (<250$^{\circ}$C) hydrothermal fluid that was changed by sluggish fluid flow and conductive cooling.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

A Biogeochemical Study of Heavy Metal Leaching from Coal Fly Ash Disposed in Yeongdong Coal-Fired Power Plant (영동화력발전소에서 방출되는 석탄회로부터 박테리아 활동에 따른 생지화학적 연구)

  • Chung, Duk-Ho;Cho, Kyu-Seong;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.170-179
    • /
    • 2011
  • Fly ashes derived from coal fired power plants have unique chemical and mineralogical characteristics. The objective of this research was to study how indigenous bacteria affected heavy metal leaching in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Yeongdong seashore, Korea. The in-situ pH of ash pond seawater was 6.3-8.5. For this study, three sites of the ash pond were chosen to collect a sample of fly ash slurry. Three samples that had a mix of fly ash (0.4 L) and seawater (1.6 L) were collected at each site. First sample was autoclaved ($120^{\circ}C$, 2.5 atm), second one was inoculated with glucose to stimulate the microbial activity, and the last sample was kept in the natural condition. Compared with other samples including autoclaved and natural samples, the glucose added sample showed sharp increase in its alkalinity after 15 days, cation concentration change such as Ca, Mg, and K seemed to increase in early stage, and then decrease 15 days later in slurry solution of glucose added sample, and a possibly considerable decrease in $SO_4^{2-}$ in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data of this study is likely to be related to the activity of bacteria at the ash pond. The result may be used to understand about the characteristic of bacteria.

Geochemical Dispersion of Elements in Volcanic Wallrocks of Pyrophyllite Deposits in Milyang Area, Kyeongnam Province (밀양지역 납석광상 화산암질 모암에서의 원소들의 지구화학적 분산)

  • Oh, Dae-Gyun;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.337-347
    • /
    • 1993
  • Mineralogical and geochemical studies on some pyrophyllite deposits in Milyang area, Kyeongnam Province (Milyang and Sungjin mine) were carried out in order to investigate dispersion patterns of chemical elements in altered volcanic wallrocks, and to interpret genetic environments of the pyrophyllite deposits. Cretaceous andesitic and tuffaceous rocks, and pyrophyllite ore specimens were collected from the dumps and drilling cores. Andesitic wallrocks were grouped as unaltered and altered rocks in the order of pyrophyllitization. Vertical dispersion patterns and relative mobilities of chemical elements in volcanic wallrocks were discussed. Geochemical environment in the Milyang area is characterized by the occurrence of boron minerals such as dumortierite coexisting with pyrophyllite ores, and tourmaline in granitic rocks. Unaltered andesitic rocks are mainly composed of plagioclase, pyroxene and hornblende, and were propylitized and saussuritized. Altered andesitic rocks are bleached and consist of quartz, sericite, pyrophyllite, kaolinite, chlorite and disseminated pyrite. Pyrophyllite ores are mainly composed of quartz, pyrophyllite, dumortierite, dissemianted pyrite and some diaspore. Enrichment of $SiO_2$, $Al_2O_3$, LOI (loss on ignition), As and Cr, and depletion of $K_2O$, $Na_2O$, CaO, MgO and total Fe are characteristic during alteration process. The REE patterns show that the pyrophyllite deposits could be originated from the continental margin volcanics. The $(La/Lu)_{cn}$ ratios of the pyrophyllite ores increase from 4.2~23.2 to 2.67~128.8 owing to strong acidic hydrothermal alteration. Vertical dispersion patterns of $Al_2O_3$, $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ (total Fe), As, Au, Sb, Cr and Sr in the wallrocks show the location of orebodies. Particularly dispersion patterns of $Al_2O_3$ and Cr indicate the extension of orebodies. Anomalous distribution of Au, As and Sb in wallrocks shows potential for gold occurrence below the pyrophyllite deposits. Judging from the relative mobilities of elements in wallrocks, $Al_2O_3$ could be added from hydrothermal solution, and the silicified rone be formed from the excess of $SiO_2$.

  • PDF

The Characteristic and genesis of Polysequum Soils in Jeju (Polysequum토양(土壤)의 특성(特性) 및 생성(生成)에 관(關)한 연구(硏究))

  • Shin, Jae-Sung;Jung, Pil-Gyun;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 1976
  • The present paper is a part of a study aimed at gaining information on the origin, mode of deposition, and characteristics of volcanic soils in Jeju. Volcanic activity of Jeju island has extremely influenced on the formation of various soils. Polysequum phenomenon of soils is one of outstanding soil genesis in Jeju. The typical polysequum soils was collected and analyzed by morphological, physico-chemical, mineralogical and micromorphological approaches The results are as follows: 1. The soils consists of polysequa, A and B horizons from volcanic ashes, unconsolidated volcanic sand layer and B(I) horizons from residual basalts. 2. The lithological discontinuity is also very distinct; silt loam from volcanic ashes, sand (II) from volcanic sand and clayey (III) from basalts. 3. Volcanic sand layer seems to be influenced by lava flow. The properties of it are similar to volcanic ashes rather than beneath residuum in micromorphological aspects. In micromorphological, this layer is gradually changed into soils. 4. Dominant clay minerals are allophane in A and B horizons from volcanic ashes and kaoline, vermiculite and illite from residual basalts. 5. The soils are not developed. There is no formation of argillic horizon in subsurface layers.

  • PDF

Investigation on Properties of Cement Mortar Using Heat Treated Flue Gas Desulfurization Gypsum (열처리된 배연탈황석고를 혼입한 시멘트 모르타르의 물성 연구)

  • Chung, Chul-Woo;Lee, Yong-Mu;Kim, Ji-Hyun;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.497-503
    • /
    • 2016
  • Flue gas desulfurization gypsum is produced from emission process of fossil fuel power plant to remove sulfur dioxide ($SO_2$) from exhaust gas. Production of flue gas desulfurization gypsum in Republic of Korea has been increasing due to the enforced regulations by government agency. Since flue gas desulfurization gypsum has characteristic that is similar to that of natural gypsum, there is a strong possibility for flue gas desulfurization gypsum to replace the role of natural gypsum. However, consumption of such material is still limited, only used for agricultural purposes or to make gypsum boards, it is necessary to expand the use of this material more aggressively. In this research, the chemical and mineralogical properties of flue gas desulfurization gypsum were investigated, and flue gas desulfurization gypsum with heat treatment was used to make cement paste. According to the results, it was found that flue gas desulfurization gypsum used in this experiment was a very high purity gypsum, and shown to have similar property to that of natural gypsum. Heat treating flue gas desulfurization gypsum above $100^{\circ}C$ was shown to bring beneficial effect on both compressive strength and drying shrinkage

Geochemical Relationship Between Stream Sediments and Regional Geology of the Upstream for the Hahn River Drainage Basin, Korea. (한강상류 하상퇴적물과 인근유역육상지질과의 지화학적 상관관계)

  • 이연희;지정만;오재경
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.153-171
    • /
    • 2004
  • This study was carried out to define the geochemical and mineralogical relationship between stream sediments and regional geology on upstream of Hahn river area. Geochemical characteristic including for major elements, trace elements and rare earth elements of the South and North Hahn river bed sediments are similar to those of acid igneous rocks which are distributed around both Hahn river basin. The chemical variation of major elements against SiO$_2$ and trace elements contents between South and North Hahn river bed sediments doesn't show the difference. REE patterns of both area show a distinct negative Eu anomaly, but total contents of rare earth elements are higher in North Hahn river sediments than South Hahn river sediments. The heavy minerals in the river bed sediments in this study area are identified as tremolite-actinolite, hematiteㆍmagnetite, common hornblende, ilmenite, garnet, epidote, rutile and sphene. In conclusion, it is elucidated that South and North Hahn river bed sediments are being originated from igneous rocks or metamorphic rocks which contains medium-high grade metamorphic minerals and components of originated from sedimentary rocks those of politic or calcareous rocks are eroded away as solution or suspended load.

Geochronology and Petrogenetic processes of the so-called Hongjesa granite in the Seogpo-Deogku Area (석포(石浦)-덕구간(德邱間)에 분포(分布)하는 소위(所謂) 홍제사화강암(洪濟寺花崗岩)의 지질연대(地質年代)와 생성과정(生成過程)에 대(對)한 硏究(연구))

  • Kim, Yong Jun;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.3
    • /
    • pp.163-221
    • /
    • 1983
  • Main aspects of this study are to clarify geochronology and petrogenetic processes of the so-called Hongjesa granite, which is a member of various intrusive rocks exposed in the northeastern part of the Ryongnam Massif, one of the Precambrian basements of South Korea. In this study, the Hongjesa grainte is divided into four rock units based on the geologic age, mineralogical and chemical constituents, and texture: the Precambrian Hongjesa granite gneiss (Hongjesa granite Proper) and leucogranite gneiss, the Paleozoic gnessic two mica granite, and the Jurassic muscovite granite. The Hongjesa granite gneiss is identified by its grayish color, slight foliation, and porphyroblastic texture. The leucogranite gneiss is distinct by its light gray color, sand medium to coarse grained texture. The gneissic two mica granite is distinguished from others by its strong foliation, containing gray-colored feldspar phenocrysts with biotite and muscovite in varying amounts. The muscovite granite occurs as a small stock containing feldspar phenocrysts along margin of the stock. These granitic rocks vary widely in composition, reflecting the facts that they partly include highly metamorphosed xenolith and schlierens as relics of magmatic and anatectic processes. In particular, grayish porphyroblasts of microcline perthite is characteristic of the Hongjesa granite gneiss, whereas epidote and garnet occur in both the Hongjesa granite gneiss and leucogranite gneiss. These minerals are considered to be formed by potassic metasomatism and contamination of highly metamorphosed rocks deeply buried under the level of the Hongjesa granite emplacement. The individual synchronous granitic rocks plotted on Harker diagram show mostly similar trends to the Daly's values. The plots of the Hongjesa granite gneiss and gneissic two mica granite concentrate near the end part of the calc-alkalic rock series on the AMF diagrams, whereas those of the leucogranite gneiss and muscovite granite indicate the trend of the Skaergaard pluton. These granitic rocks plotted on a Q-Ab-Or diagram (petrogeny's residua system) fall well outside the trough of the system. This can be attributed to the potassic matasomatism of these rocks. On the ACF diagram, these rocks appear to be dominantly I-type prevailing over S-type. The K-Ar ages, obtained from a total of 7 samples of the leucogranite gneiss, gneissic two mica granite, muscovite granite, porphyritic alkali granite, and rhyolitic rock, in addition to the Rb/Sr ages of the Hongjesa granite gneiss by previous workers, permit the rock units to be arranged in the following chronological order: The middle Proterozoic Hongjesa granite gneiss (1714-1825 m.y.), the upper proterozoic leucogranite gneiss (875-880 m. y.), the middle Paleozoic gneissic two mica granite (384 m. y.) the upper Jurassic muscovite granite (147 m. y.), the Eocene alkali granite (52 m. y.), and the Eocene rhyolitic rock (45 m. y.). From the facts and data mentioned above, it is concluded that the so-called Hongjesa granite is not a single granitic mass but is further subdivided into the four rock units. The Hongjesa granite gneis, leucogranite gneiss, and gneissic two mica granite are postulated to be either magmatic or parautochtonous, intrusive, and the later muscovite granite is to be magmatic in origion.

  • PDF