• Title/Summary/Keyword: mineral solubility

Search Result 80, Processing Time 0.029 seconds

Comparison of Physicochemical Properties on Waxy Black Rice and Glutinous Rice (찰흑미와 일반찰벼 쌀가루의 이화학적 성질 비교)

  • Oh, Geum-Soon;Kim, Kwan;Na, Hwan-Sik;Choi, Gyong-Choel
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • In this study, the physicochemical properties of warty black and glutinous rice flours were compared. Crude protein content of waxy black rice flour (9.01%) was higher than than of glutinous rice flour (7.54%). Most mineral contents of waxy black rice flour were higher than those of glutinous rice flour. The major fatty acids in the waxy black and glutinous rice flours were oleic acid (38.57% and 36.95%) and linoleic acid (38.60% and 39.10%). The major detected amino acids of both samples were aspartic acid, glutamic acid and arginine. Water binding capacity of waxy black rice flour (93.26%) was higher than that of glutinous rice flour (87.42%) . Swelling powers and solubilities of waxy black rice flour were lower than those of glutinous rice flour in according to increasing temperatures. Maximum absorbance wavelength (λ$_{max}$) and absorbance at 625 nm were similar between both samples. X-ray diffraction patterns of both samples showed traditional A type as Peaks 2$\theta$ at 15.1$^{\circ}$, 17.1$^{\circ}$, 18.0$^{\circ}$and 23.2$^{\circ}$. The relative crystallinities of waxy black and glutinous rice flours were 0.40 and 0.41, respectively.

Chemical Composition of Cultured and Wild Codonopsis lanceolata Roots of Different Age Groups -I. Proximate Composition, Minerals and Protein Fractions- (더덕(沙蔘)의 년근별(年根別) 화학성분(化學成分)에 관(關)한 연구(硏究) -제1보(第1報) : 일반성분(一般成分), 무기질(無機質) 및 단백질(蛋白質) 분획(分劃)-)

  • Park, Boo-Duck;Park, Yong-Gone;Choi, Kwang-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.3
    • /
    • pp.274-279
    • /
    • 1985
  • Proximate compositions, minerals and protein fractions of the roots of cultured and wild Codonopsis lanceolata of different age groups were examined as the basic research for the study of their source of processed foods. The most abundant proximate composition of the roots of C. lanceolata was observed to be total sugars and next come crude protein, crude fiber, crude fat and ash in descending order irrespective of cultured and wild ones. The richest mineral contained in the roots was noticed to be K and followed by Mg and Ca. Generally increased tendency of crude protein, fat, ash, K, Mg, Ca, Mn, Zn, Cu and P contents were observed with older roots, however, decreased total sugars and Fe content. Lead and cadmium content was far bellow the authorized tolerance limits. The quantitative fractionation of the protein of the roots ranked albumin the highest content, followed by globuin, prolamin and glutelin. Decreased albumin content was observed with the older age roots, while increased globulin, prolamin and glutelin content. The minimum solubility of the soluble protein of the roots was found to be at pH 4.0 and maximum, at pH 10.0. Disc gel electrophoresis of the soluble protein of C. lanceolata roots showed almost similar patterns and numbers of bands. The molecular weight for main band protein was estimated to be about 90,000.

  • PDF

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition -1. Changes in Viscosity, Average Molecular Weight and Chemical Structure of Depolymerized Alginate- (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리${\cdot}$화학적 및 생물학적 특성에 관한 연구 -1. 저분자 alginate의 점도, 평균분자량 및 분자구조의 변화-)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • Alginate obtained from brown algae had various physicochemical and rheological properties and could used as a dietary fiber, However, alginate has not been widely applied to the food industry, since it had high viscosity, high gelling effect conjugated with some mineral, and low solubility. To improve functionality of alginate, partially develymerized alginates, which was water-soluble dietary fiber were obtained by hydrolysis of alginate from the sea tangle, Laminaria japonicus, heated at $121^{\circ}C$. Effects of depolymerization of alginate on the changes of viscosity and average molecular weight, block composition ratio of mannuronate to guluronate (M/G ratio), chemical properties using $PT-IR, ^1H-NMR, and ^(13)C-NMR$ spectrum were investigated. The average molecular weight and viscosity of the alginate were rapidly decreased with the thermal decomposition, and estimated to be 1,307,415 dalton and 284,000 cps, before heating, 728,106 and 3,940.29 cps after 30 min heating, 102,635 and 22.22 cps after 2.5 hrs heating, 51,205 and 12.05 cps after 3 hrs, and 10,049 and 4.28 cps after 6.5 hrs, respectively. The M/G ratio was increased with the heating time, while MM-block did not show any changes and GG-block diminished. The results of $FT-IR, ^1H-NMR and ^(13)C-NMR$ spectrum suggested that changes of molecular structure did not occur by the thermal decomposition.

  • PDF

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

REE(rare earth element) contents for the Korean ginsengs from three different soils (3 토양에서 채취된 고려 인삼의 희토류 원소 함량)

  • Song, Suck-Hwan;Min, Ell-Sik;Chan, Song-Chae
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.357-381
    • /
    • 2008
  • REEs of ginsengs(2, 3, 4 years) from the granite, phyllite and shale areas, Keumsan, are analysed and compared with the their soils. In the weathered soils, high element contents are shown in the LREE of the granite and in the HREE of the phyllite. The granite dominantly show positive correlation relationships. In the field soils, the phyllite are high while the granite are low. Relationships of the contents and correlation relationships can be explained with mineral assemblages and contents within soils, and their solubilities. In the host rocks, high contents are found in the LREE of the granite and HREE of the phyllite. The rocks dominantly show positive relationships. In the ginseng, high contents are shown in the 2 year for the shale and granite, and the 4 year for the phyllite. Element pairs mainly show positive relationships. Comparing of the same ages, the granite are mainly high. In the ratios between the soils and the ginsengs, differences of the several hundred to ten times are found, but dominantly, of the several hundred times in the shale and phyllite, and of the several ten times in the granite. The differences are big in the 3 year, and small in all REE of the 2 year from the shale and granite. while, in the phyllite, big in the LREE of the 2 year and HREE of the 3 year. Based on the absorption of the leachate by the ginsengs within soils, contents and correlation relationships of the ginsengs from the different soils can be explained with mineral assemblages, solubilities of the constitutional minerals and phyio-chemical affects influenced on the solubility. Of the three different soils, the ginsengs of the granites are chemically more similar to their soils.

Acoustic Characteristics of Gas-related Structures in the Upper Sedimentary Layer of the Ulleung Basin, East Sea (동해 울릉분지 퇴적층 상부에 존재하는 가스관련 퇴적구조의 음향 특성연구)

  • Park, Hyun-Tak;Yoo, Dong-Geun;Han, Hyuk-Soo;Lee, Jeong-Min;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.513-523
    • /
    • 2012
  • The upper sedimentary layer of the Ulleung Basin in the East Sea shows stacked mass-flow deposits such as slide/slump deposits in the upper slope, debris-flow deposits in the middle and lower slope, and turbidites in the basin plain. Shallow gases or gas hydrates are also reported in many area of the Ulleung Basin, which are very important in terms of marine resources, environmental changes, and geohazard. This paper aims at studying acoustic characteristics and distribution pattern of gas-related structures such as acoustic column, enhanced reflector, dome structure, pockmark, and gas seepage in the upper sedimentary layer, by analysing high-resolution chirp profiles. Acoustic column shows a transparent pillar shape in the sedimentary layer and mainly occurs in the basin plain. Enhanced reflector is characterized by an increased amplitude and laterally extended to several tens up kilometers. Dome structure is characterized by an upward convex feature at the seabed, and mainly occurs in the lower slope. The pockmark shows a small crater-like feature and usually occurs in the middle and lower slope. Gas seepage is commonly found in the middle slope of the southern Ulleung Basin. These gas-related structures seem to be mainly caused by gas migration and escape in the sedimentary layer. The distribution pattern of the gas-related structures indicates that formation of these structures in the Ulleung Basin is controlled not only by sedimentary facies in upper sedimentary layer but also by gas-solubility changes depending on water depth. Especially, it is interpreted that the chaotic and discontinuous sedimentary structures of debris-flow deposits cause the facilitation of gas migration, whereas the continuous sedimentary layers of turbidites restrict the vertical migration of gases.

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Cation Exchange Capacities, Swelling, and Solubility of Clay Minerals in Acidic Solutions : A Literature Review

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 1979
  • A literature review is made on the physical and chemical characteristics of clay minerals in acidic solutions from the mineralogical and hydrometallurgical viewpoints. Some of the important characteristics of clays are their ability to cation exchange, swelling, and incongruent dissolution in acidic solutions. Various clay minerals can take up metallic ions from solution via cation exchange mechanism. Generally, cation exchange capacity increases in the following order : kaolinite, halloysite, illite, vermiculite, and montmorillonite. In acidic solutions, the cation uptake such as copper by clay minerals is strongly inhibited by hydrogen and aluminum ions and thus is not economically significant factor for recovery of metals such as uranium and copper. In acidic solutions, the cation uptake is substial. Swelling is minimal at lower pH, possibly due to lattice collapse. Swelling may be controllable with montmorillonite type clays by exchanging interlayer sodium with lithium and/or hydroxylated aluminum species. The effect of add on clay minerals are : 1. Division of aggregates into smaller plates with increase in surface area and porosity. 2. Clay-acid reactions occur in the following order: (i) $H^+$ replacement of interlayer cations, (ii) removal of octahedral cations, such as Al, Fe, and Mg, and (iii) removal of tetrahedral Al ions. Acid attack initiates, around the edges of the clay particles and continued inward, leaving hydrated silica gel residue around the edges. 3. Reaction rates of (ii) and (iii) are pseudo-1st order and proportional to acid concentration. Rate doubles for every temperature increment of $10^{\circ}C$. Implications in in-situ leaching of copper or uranium with acid are : 1. Over the life span of the operation for a year or more, clays attacked by acid will leave silica gel. If such gel covers the surface of valuable mineral surfaces being leached, recovery could be substantially delayed. 2. For a copper deposit containing 0.5% each of clay minerals and recoverable copper, the added cost due to clay-acid reaction is about 1.5c/lb of copper (or 0.93 lbs of $H_2SO_4/1b$ of copper). This acid consumption by clay may be a factor for economic evaluation of in-situ leaching of an oxide copper deposit.

  • PDF

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.