Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea

구운동 폐광산 하류 논토양의 토심별 중금속함량

  • Yun, Eul-Soo (Functional Cereal Crop Div. National Institute of Crop Science, RDA) ;
  • Park, Sung-Hak (Chengdo Regional Agricultural Cooperative) ;
  • Ko, Jee-Yeon (Functional Cereal Crop Div. National Institute of Crop Science, RDA) ;
  • Jung, Ki-Yeol (Functional Cereal Crop Div. National Institute of Crop Science, RDA) ;
  • Park, Ki-Do (Functional Cereal Crop Div. National Institute of Crop Science, RDA) ;
  • Hwang, Jae-Bok (Functional Cereal Crop Div. National Institute of Crop Science, RDA) ;
  • Park, Chang-Yeong (Functional Cereal Crop Div. National Institute of Crop Science, RDA)
  • 윤을수 (농촌진흥청 국립식량과학원 기능성잡곡과) ;
  • 박성학 (청도농협) ;
  • 고지연 (농촌진흥청 국립식량과학원 기능성잡곡과) ;
  • 정기열 (농촌진흥청 국립식량과학원 기능성잡곡과) ;
  • 박기도 (농촌진흥청 국립식량과학원 기능성잡곡과) ;
  • 황재복 (농촌진흥청 국립식량과학원 기능성잡곡과) ;
  • 박창영 (농촌진흥청 국립식량과학원 기능성잡곡과)
  • Received : 2010.09.28
  • Accepted : 2010.10.11
  • Published : 2010.10.30

Abstract

This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

토양오염 방지사업에 의해 복원이 완료된 지역인 밀양시 구운동광산의 오염원인 잔존 광미 퇴적지의 광미와 주변 농경지에 대한 오염형태를 조사하여 환경 복원의 기초 자료를 얻고자 수행하게 되었다. 본 연구 대상지는 경남 밀양시 무안면 마흘리 구운동 광산 주변 수계 및 토양으로 조사지의 지질은 신라통 안산암질이며 광산의 광상은 함유 황광으로 주 채굴금속은 금, 은, 동, 납, 아연이었으며, 잔존 광미 퇴적지의 광미와 주변 농경지의 중금속을 분석하였다. 광구 직하류 휴경논 표토 (0-16 cm)의 화학성은 pH는 4.3-4.4내외, 치환성석회 및 고토함량은 각각 0.2 및 0.04 $cmol_c\;kg^{-1}$ 인 반면 토심이 깊어질수록 높아졌다. 광구수 및 광미 적치장 유출수의 직접 영향은 받는 최상류 퇴적토양(SI)의 0.1N HCl 가용성 Cu, Cd, Pb, Cr 및 Ni의 함량은 각각 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$이었고, 최하류 논 (SIII)의 경우 Cu 25, Cd 2.8, Pb 16.7, Cr 0.17 및 Ni 0.44 mg $kg^{-1}$이었다. 휴경지 논 토양 토심별 중금속 함량은 Cr, Pb, Cu는 토심 16 cm 상부에서, Cd, Ni는 토심 16-60 cm 부위에서 높은 분포특성을 보였다.

Keywords

References

  1. Jeon, S.R., J.I. Chung, and D.H. Kim. 2002. Environmental effects from natural water contaminated with acid mine drainage in the abandoned Backun mine area Econ. Eviron. Geol. 35:325-337.
  2. Jung, G.B., W.I. Kim, K.H. Moon, and I.S. Ryu. 2000, Fractionation and availability of heavy metals in paddy soils near abandoned mining areas. Kor. J. Envoron. Agric. 19:319-323.
  3. Jung, G.B., W.I. Kim, K.R. Park, and S.G. Yoon. 2001. Vertical distribution of heavy metals in paddy soil near abandoned metal mines. Kor. J. Envoron. Agric. 19: 319-323.
  4. Jung, M.C., MY. Jung, and Y.W. Choi. 2004, Environmental assessment of heavey metals aroumd abandoned metalliferous mine in Korea. Econ. Eviron. Geol. 37:21-33.
  5. Kim B.Y. 1998. Countermeasure on agri-environmental pollution. Korean J. Soil Sci. Fert., 31:121-129.
  6. Kim J.U., H.S. Moon, Y.G. Song, and J.H. Yoo. 1999, Chemical forms of heavy metals elements in mine wastes, stream sediments and surrounding soils from the Gubong mine, Korea. Econ. Environ. Geol. 32:261-271.
  7. Kim, W.I, and M.S. Kim. 2008. Long-term monitoring of heavy metal contents in paddy soils. Korean J. Soil Sci. Fert. 41:190-198.
  8. Korea Institute of Geoscience and Mineral Resources, 1964. The geological map of Korea -Yeongsan map-, sheet 6920-III.
  9. Lee, M.H., H.I. Yoo, and Y.S. Se. 1994. Vertical distribution of heavy metals in paddy soil adjacent to lead and zinc mining sites and their relation to soil characteristics. J. Korean Society of Grundwater Environment. 1:80-84.
  10. Lee, S.H. and J.Y. Jung. 2004. Geo-chemical characteristics of soil solution from the soil near mine tailing dumps and the contamination assessment in Duckum mine. Econ. Eviron. Geol. 37:61-72.
  11. Ministry of Environment, 1999, Standard test method for soil pollution.
  12. Min J.S., Y.U. Jung, H.J. Lee, and D.M. Lee. 2000. A study on the environmental & safety problems and their remediation around mining areas. Korea Institute of Geoscience and Mineral Resources research repot. 1999-R-T108-P-20.
  13. NIAST (National Institute of Agricultural Science and Technology). 1988. Methods of soil chemical analysis.
  14. Park, Y.S. and J. Kim. 2001. A study on the horizontal and vertical distribution of heavy metal elements in slime dump from Dukum mines, Korea. Econ. Environ. Geol. 33:91-100.
  15. YARI(Yeongnam Agriculture Research Institute). 1997. Survey on heavy-metal contamination in soils polluted form mining water. YARI research repot. 707-717.