• Title/Summary/Keyword: mineral material

Search Result 943, Processing Time 0.03 seconds

Synthesis of lanthanum oxyfluoride by grinding lanthanum oxide with poly (tetrafluoroethylene)

  • Lee Jaeryeong;Ahn Jonggwan;Kim Dongjin;Shin Heeyoung;Chung Hunsaeng;Saito Fumio
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.624-628
    • /
    • 2003
  • Lanthanum oxyfluoride can be synthesized by mechanochemical (MC) reaction between lanthanum oxide ($La_2O_3$) and polytetrafluoroethylene (PTFE, ($({CF_2CF_2}_n)$) in air using a planetary mill. MC reaction between the two materials induced from intensive grinding operation. The MC reaction is almost finished by 240min, and the products ground for 240min or more are composed of LaOF, amorphous $La(CO_3)F$ and amorphous carbon (C). Heating this MC reaction products at $600^{\circ}C$ enables us to eliminate amorphous C and decompose $La(CO_3)F$ into LaOF, so that pure LaOF material can be obtained as the final product. The average particle size of the final product (purified LaOF) is around few ten nanometers.

  • PDF

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon;Lee, Yoonjoo;Kim, Soo-Ryong;Shin, Dong-Geun;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

A Brief Review on Limestone Deposits in Korea, Vietnam and Applications of Limestone

  • Kwak, Yujung;Tuan, Lai Quang;Jung, Euntae;Jangb, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.42-49
    • /
    • 2020
  • Precipitated Calcium Carbonate (PCC) can be utilized in energy-effective paper production. Limestone is a raw material for synthesizing PCC. Since the PCC production yield depends on the physicochemical properties of the limestone, a basic investigation of the raw limestone is required. This study provides a brief review of the origin of limestone, limestone distribution characteristics, and limestone deposits in Korea and Vietnam. Most limestones in Korea were formed in the Paleozoic era. On the other hand, limestones in Vietnam have various ages from the Precambrian to the Triassic. Limestone is the most largely produced mineral in Korea, but Vietnam has 5 times more amount of limestone reserves than Korea.

Analysis of Functional Characteristics of the Commercial Wood Charcoal in Korea (국내 시판용 목탄의 기능성 분석(II))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.480-489
    • /
    • 2010
  • We investigated the functional characteristics of commercial wood charcoal in Korea and their application as functional raw materials. The areas of analysis were anatomical features, elementary composition, mineral composition, caloric values, anion and far-infrared ray emission, and moisture absorption capacity. Based on the analyses as above mentioned, it is considered that charcoal can be evaluated as functional raw material. In commercial wood charcoal in Korea, there were highly varied depending on manufacturing methods as black charcoal, white charcoal and mechanical charcoal and manufactures for elementary composition, mineral composition, anion emission, far infrared ray emission. Especially, black charcoal showed lower moisture absorption capacity than white charcoal and mechanical charcoal. For charcoal as functional raw material, selective usage are needed based on the analyses of anatomical features, elementary composition, mineral composition, caloric values, anion and far-infrared ray emission, and moisture absorption capacity. Specific charcoal making methods for improving specific functionality, required as functional raw material, are necessary in further research.

Recovery of PET from Final Plastic Wastes using HDPE Cyclone Charger (HDPE 싸이클론 하전장치(荷電裝置)를 이용한 종말품(終末品) 폐(廢)플라스틱으로부터 PET의 회수(回收))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.51-56
    • /
    • 2007
  • Plastics are widely used in everyday life as very useful material. In Korea, about 4 million tons of plastic wastes are generated annually. However, recycling ratio is below 30%, and most of plastic wastes are disposed by landfill and incineration. Hence, the development of material separation technique that can recycle plastic wastes is a necessary situation. In this study, Triboelectrostatic separation for recovery of PET from final plastic wastes obtained from the sink product after wet-type gravity separation has been carried out. In the charging properties, the charge polarity and charge density of PET and PVC were very effective with the tirbo-charger made of PP and HDPE with the decrease in relative humidity. In material separation using HDPE cyclone charger, a PET grade of 96.80% and a recovery of 85.0% were achieved at 30 kV and the splitter position -2cm from the center. In order to obtain PET grade of 98.5%, PET recovery should be sacrificed by 24% with moving the splitter from the center to -6cm position.

The Properties of Concrete Compressive Strength used Rice Straw Ash (소성된 볏짚을 혼입한 콘크리트 압축강도 특성)

  • Kim, Young-Soo;Shin, Sang-Yeop;Jeong, Euy-Chang
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • When manufacturing concrete, several mineral admixture is added to improve the basic physical property and durability and to make economical concrete. Such mineral admixture includes fly ash, granulated blast furnace slag, silica fume, etc., and not only the studies about mixing these mineral admixtures but also the studies for the development of new materials have been steadily in progress. Recently, some researchers have found, as a part of the development of new materials, the rice straw ash can also be used as a pozzolanic material for concrete considering similar chemical properties of rice straw ash to that of rice husk ash. But there has been insufficient amount of study about it. So, this study was to investigate the possibility as mineral admixture of agriculture by-product, by analyzing properties of concretes using rice straw ash with replacement ratio in comparison with other mineral admixture. In order to measure amount of SiO2 of rice straw ash, XRF(X-ray fluorescence) analysis was tested. For the measure pozzolanic reaction of rice straw ash, pH change and color change was tested according to curing day. Also to evaluate properties of concrete using rice straw ash, slump test, air contents test and compressive strength was tested.

Impurity variation in high purity silica mineral with different leaching methods (실리카광물의 산침출 정제방법에 따른 불순물 변화 연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Chung, Soo Bok;Chae, Young Bae
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.332-337
    • /
    • 2008
  • Purification of silica mineral was compared with various leaching methods such as shaking, stirring, ultrasonic with 2.5% HF/HCl solution. Among them, ultrasonic method showed a best leaching effect. From the leaching experiment, Na, K, Fe, Al exist as the major impurity elements. The removal rate of Al, Fe showed little difference with various leaching methods but Ca, Mn, Na were very different. Four kinds of silica mineral (>99% purity) after physical purification treatment were used for ultrasonic leaching experiment. Among them IN-Si had a highest impurity removal rate. Ca, Cr, K, Zn were removed above 80% using ultrasonic leaching method and Fe was also removed above 60%. But Al showed 10~60% removal rate with different samples.

Upgrading of Iron from Waste Copper Slag by A Physico-chemical Separation Process (Physico-chemical 분리 공정에 의한 폐동슬래그로부터 철의 품위향상)

  • Lee, Kwang-Seok;Jo, Seul-Ki;Shin, Doyun;Jeong, Soo-Bock;Lee, Jae-Chun;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.30-36
    • /
    • 2014
  • A large amount of waste copper slag containing about 35 ~ 45% iron has been generated and discarded every year from pyrometallurgical processes for producing copper from copper concentrate. Thus, recovery of iron from the waste copper slag is of great interest for comprehensive use of mineral resource and reduction of environment problems. In this study, a physico-chemical separation process for upgrading iron from the waste copper slag discharged as an industrial waste has been developed. The process first crushes the waste copper slag below 1 mm (first crushing step), followed by carbon reduction at $1225^{\circ}C$ for 90 min (carbon reduction step). And then, resulting material is again crushed to $-104{\mu}m$ (second crushing step), followed by wet magnetic separation (wet magnetic separation step). Using the developed process, a magnetic product containing more than 66 wt.% iron was obtained from the magnetic separation under a magnetic field strength of 0.2 T for the waste copper slag treated by the reduction reaction. At the same conditions, the percentage recovery of iron was over 72%. The iron rich magnetic product obtained should be used as a iron resource for making pig iron.